-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_knn.py
216 lines (180 loc) · 6.59 KB
/
eval_knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from pathlib import Path
import argparse
import os
import random
import signal
import sys
from torchvision import datasets, transforms
import torch
import resnet
from torch.nn import functional as F
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def get_arguments():
parser = argparse.ArgumentParser(
description="Evaluate a pretrained model on ImageNet"
)
# Data
parser.add_argument("--data-dir", default='./datasets/imagenet', type=Path, help="path to dataset")
# Checkpoint
parser.add_argument("--pretrained", default='./exp/imsvd/model_final.pth', type=Path, help="path to pretrained model")
# Model
parser.add_argument("--arch", type=str, default="resnet50")
# Running
parser.add_argument(
"--workers",
default=8,
type=int,
metavar="N",
help="number of data loader workers",
)
parser.add_argument(
"--batch-size", default=256, type=int, metavar="N", help="mini-batch size"
)
parser.add_argument(
"--k", default=20, type=int, metavar="N", help="number of nearest neighbors"
)
return parser
def main():
parser = get_arguments()
args = parser.parse_args()
if args.train_percent in {1, 10}:
# args.train_files = urllib.request.urlopen(
# f"https://raw.githubusercontent.com/google-research/simclr/master/imagenet_subsets/{args.train_percent}percent.txt"
# ).readlines()
with open(f"./imagenet_{args.train_percent}percent.txt", 'r') as f:
lines = f.readlines()
args.train_files = []
for i in range(len(lines)):
args.train_files.append(lines[i][0:-1])
args.ngpus_per_node = torch.cuda.device_count()
if "SLURM_JOB_ID" in os.environ:
signal.signal(signal.SIGUSR1, handle_sigusr1)
signal.signal(signal.SIGTERM, handle_sigterm)
# single-node distributed training
args.rank = 0
args.dist_url = f"tcp://localhost:{random.randrange(49152, 65535)}"
args.world_size = args.ngpus_per_node
torch.multiprocessing.spawn(main_worker, (args,), args.ngpus_per_node)
def main_worker(gpu, args):
args.rank += gpu
torch.distributed.init_process_group(
backend="nccl",
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
if args.rank == 0:
args.exp_dir.mkdir(parents=True, exist_ok=True)
stats_file = open(args.exp_dir / "stats.txt", "a", buffering=1)
print(" ".join(sys.argv))
print(" ".join(sys.argv), file=stats_file)
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
model, embedding = resnet.__dict__[args.arch](zero_init_residual=True)
state_dict = torch.load(args.pretrained, map_location="cpu")
if "model" in state_dict:
state_dict = state_dict["model"]
state_dict = {
key.replace("module.backbone.", ""): value
for (key, value) in state_dict.items()
}
msg = model.load_state_dict(state_dict, strict=False)
print(msg)
model.cuda(gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
model.eval()
# Data loading code
traindir = args.data_dir / "train"
valdir = args.data_dir / "val"
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]
),
)
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]
),
)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
kwargs = dict(
batch_size=args.batch_size // args.world_size,
num_workers=args.workers,
pin_memory=True,
)
train_loader = torch.utils.data.DataLoader(
train_dataset, sampler=train_sampler, **kwargs
)
val_loader = torch.utils.data.DataLoader(val_dataset, **kwargs)
features_val = []
labels_val = []
for step, (images, target) in enumerate(val_loader, start=0):
print(step)
with torch.no_grad():
output = model(images.cuda(gpu, non_blocking=True))
output = F.normalize(output, p=2, dim=1)
features_val.append(output.cpu())
labels_val.append(target)
features_val = torch.cat(features_val, dim=0)
labels_val = torch.cat(labels_val, dim=0)
k = args.k
num_classes = 1000
retrieval_one_hot = torch.zeros(k, num_classes)
dis_nearest = None
labels_nearest = None
temp = 0.07
for step, (images, labels) in enumerate(train_loader, start=0):
print(step)
with torch.no_grad():
output = model(images.cuda(gpu, non_blocking=True))
output = F.normalize(output, p=2, dim=1)
if output.shape[0] < k:
ks = output.shape[0]
else:
ks = k
features_train = output.cpu().t()
similarity = torch.mm(features_val, features_train)
dis, indices = similarity.topk(ks)
candidates = labels.view(1, -1).expand(labels_val.shape[0], -1)
retrieved_neighbors = torch.gather(candidates, 1, indices)
if dis_nearest is not None:
dis = torch.cat([dis_nearest, dis], dim=1)
labels_nearest = torch.cat([labels_nearest, retrieved_neighbors], dim=1)
dis_nearest, indices_k = dis.topk(k)
labels_nearest = torch.gather(labels_nearest, 1, indices_k)
else:
dis_nearest = dis
labels_nearest = retrieved_neighbors
retrieval_one_hot.resize_(labels_val.shape[0] * k, num_classes).zero_()
retrieval_one_hot.scatter_(1, labels_nearest.view(-1, 1), 1)
distances_transform = dis_nearest.clone().div_(temp).exp_()
probs = torch.sum(torch.mul(
retrieval_one_hot.view(labels_val.shape[0], -1, num_classes),
distances_transform.view(labels_val.shape[0], -1, 1)
), dim=1)
_, preds = probs.sort(1, descending=True)
# find the preds that match the target
correct = preds.eq(labels_val.data.view(-1, 1))
top1 = correct.narrow(1, 0, 1).sum().item()
top5 = correct.narrow(1, 0, min(5, k)).sum().item()
total = labels_val.size(0)
top1 *= 100.0 / total
top5 *= 100.0 / total
print(top1, top5)
if __name__ == "__main__":
main()