forked from nivosco/EfficientDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·391 lines (331 loc) · 14.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import argparse
from datetime import date
import os
import sys
import tensorflow as tf
# import keras
# import keras.preprocessing.image
# import keras.backend as K
# from keras.optimizers import Adam, SGD
from tensorflow import keras
import tensorflow.keras.backend as K
from tensorflow.keras.optimizers import Adam, SGD
from augmentor.color import VisualEffect
from augmentor.misc import MiscEffect
from model import efficientdet
from losses import smooth_l1, focal, smooth_l1_quad
from efficientnet import BASE_WEIGHTS_PATH, WEIGHTS_HASHES
def makedirs(path):
# Intended behavior: try to create the directory,
# pass if the directory exists already, fails otherwise.
# Meant for Python 2.7/3.n compatibility.
try:
os.makedirs(path)
except OSError:
if not os.path.isdir(path):
raise
def get_session():
"""
Construct a modified tf session.
"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
def create_callbacks(training_model, prediction_model, validation_generator, args):
"""
Creates the callbacks to use during training.
Args
training_model: The model that is used for training.
prediction_model: The model that should be used for validation.
validation_generator: The generator for creating validation data.
args: parseargs args object.
Returns:
A list of callbacks used for training.
"""
callbacks = []
tensorboard_callback = None
if args.tensorboard_dir:
if tf.version.VERSION > '2.0.0':
file_writer = tf.summary.create_file_writer(args.tensorboard_dir)
file_writer.set_as_default()
tensorboard_callback = keras.callbacks.TensorBoard(
log_dir=args.tensorboard_dir,
histogram_freq=0,
batch_size=args.batch_size,
write_graph=True,
write_grads=False,
write_images=False,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None
)
callbacks.append(tensorboard_callback)
if args.evaluation and validation_generator:
if args.dataset_type == 'coco':
from eval.coco import Evaluate
# use prediction model for evaluation
evaluation = Evaluate(validation_generator, prediction_model, tensorboard=tensorboard_callback)
else:
from eval.pascal import Evaluate
evaluation = Evaluate(validation_generator, prediction_model, tensorboard=tensorboard_callback)
callbacks.append(evaluation)
# save the model
if args.snapshots:
# ensure directory created first; otherwise h5py will error after epoch.
makedirs(args.snapshot_path)
checkpoint = keras.callbacks.ModelCheckpoint(
os.path.join(
args.snapshot_path,
f'{args.dataset_type}_{{epoch:02d}}_{{loss:.4f}}_{{val_loss:.4f}}.h5' if args.compute_val_loss
else f'{args.dataset_type}_{{epoch:02d}}_{{loss:.4f}}.h5'
),
verbose=1,
save_weights_only=True,
# save_best_only=True,
# monitor="mAP",
# mode='max'
)
callbacks.append(checkpoint)
# callbacks.append(keras.callbacks.ReduceLROnPlateau(
# monitor='loss',
# factor=0.1,
# patience=2,
# verbose=1,
# mode='auto',
# min_delta=0.0001,
# cooldown=0,
# min_lr=0
# ))
return callbacks
def create_generators(args):
"""
Create generators for training and validation.
Args
args: parseargs object containing configuration for generators.
preprocess_image: Function that preprocesses an image for the network.
"""
common_args = {
'batch_size': args.batch_size,
'phi': args.phi,
'detect_text': args.detect_text,
'detect_quadrangle': args.detect_quadrangle
}
# create random transform generator for augmenting training data
if args.random_transform:
misc_effect = MiscEffect()
visual_effect = VisualEffect()
else:
misc_effect = None
visual_effect = None
if args.dataset_type == 'pascal':
from generators.pascal import PascalVocGenerator
train_generator = PascalVocGenerator(
args.pascal_path,
'trainval',
skip_difficult=True,
misc_effect=misc_effect,
visual_effect=visual_effect,
**common_args
)
validation_generator = PascalVocGenerator(
args.pascal_path,
'val',
skip_difficult=True,
shuffle_groups=False,
**common_args
)
elif args.dataset_type == 'csv':
from generators.csv_ import CSVGenerator
train_generator = CSVGenerator(
args.annotations_path,
args.classes_path,
misc_effect=misc_effect,
visual_effect=visual_effect,
**common_args
)
if args.val_annotations_path:
validation_generator = CSVGenerator(
args.val_annotations_path,
args.classes_path,
shuffle_groups=False,
**common_args
)
else:
validation_generator = None
elif args.dataset_type == 'coco':
# import here to prevent unnecessary dependency on cocoapi
from generators.coco import CocoGenerator
train_generator = CocoGenerator(
args.coco_path,
'train2017',
misc_effect=misc_effect,
visual_effect=visual_effect,
group_method='random',
**common_args
)
validation_generator = CocoGenerator(
args.coco_path,
'val2017',
shuffle_groups=False,
**common_args
)
else:
raise ValueError('Invalid data type received: {}'.format(args.dataset_type))
return train_generator, validation_generator
def check_args(parsed_args):
"""
Function to check for inherent contradictions within parsed arguments.
For example, batch_size < num_gpus
Intended to raise errors prior to backend initialisation.
Args
parsed_args: parser.parse_args()
Returns
parsed_args
"""
if parsed_args.gpu and parsed_args.batch_size < len(parsed_args.gpu.split(',')):
raise ValueError(
"Batch size ({}) must be equal to or higher than the number of GPUs ({})".format(parsed_args.batch_size,
len(parsed_args.gpu.split(
','))))
return parsed_args
def parse_args(args):
"""
Parse the arguments.
"""
today = str(date.today())
parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')
subparsers = parser.add_subparsers(help='Arguments for specific dataset types.', dest='dataset_type')
subparsers.required = True
coco_parser = subparsers.add_parser('coco')
coco_parser.add_argument('coco_path', help='Path to dataset directory (ie. /tmp/COCO).')
pascal_parser = subparsers.add_parser('pascal')
pascal_parser.add_argument('pascal_path', help='Path to dataset directory (ie. /tmp/VOCdevkit).')
csv_parser = subparsers.add_parser('csv')
csv_parser.add_argument('annotations_path', help='Path to CSV file containing annotations for training.')
csv_parser.add_argument('classes_path', help='Path to a CSV file containing class label mapping.')
csv_parser.add_argument('--val-annotations-path',
help='Path to CSV file containing annotations for validation (optional).')
parser.add_argument('--detect-quadrangle', help='If to detect quadrangle.', action='store_true', default=False)
parser.add_argument('--detect-text', help='If is text detection task.', action='store_true', default=False)
parser.add_argument('--save-ckpt', help='If is text detection task.', action='store_true', default=False)
parser.add_argument('--snapshot', help='Resume training from a snapshot.')
parser.add_argument('--freeze-backbone', help='Freeze training of backbone layers.', action='store_true')
parser.add_argument('--freeze-bn', help='Freeze training of BatchNormalization layers.', action='store_true')
parser.add_argument('--lr', help='Learning Rate', type=float, default=1e-3)
parser.add_argument('--weighted-bifpn', help='Use weighted BiFPN', action='store_true')
parser.add_argument('--batch-size', help='Size of the batches.', default=1, type=int)
parser.add_argument('--phi', help='Hyper parameter phi', default=0, type=int, choices=(0, 1, 2, 3, 4, 5, 6))
parser.add_argument('--gpu', help='Id of the GPU to use (as reported by nvidia-smi).')
parser.add_argument('--epochs', help='Number of epochs to train.', type=int, default=50)
parser.add_argument('--steps', help='Number of steps per epoch.', type=int, default=100)
parser.add_argument('--snapshot-path',
help='Path to store snapshots of models during training',
default='checkpoints/{}'.format(today))
parser.add_argument('--tensorboard-dir', help='Log directory for Tensorboard output',
default='logs/{}'.format(today))
parser.add_argument('--no-snapshots', help='Disable saving snapshots.', dest='snapshots', action='store_false')
parser.add_argument('--no-evaluation', help='Disable per epoch evaluation.', dest='evaluation',
action='store_false')
parser.add_argument('--random-transform', help='Randomly transform image and annotations.', action='store_true')
parser.add_argument('--compute-val-loss', help='Compute validation loss during training', dest='compute_val_loss',
action='store_true')
# Fit generator arguments
parser.add_argument('--multiprocessing', help='Use multiprocessing in fit_generator.', action='store_true')
parser.add_argument('--workers', help='Number of generator workers.', type=int, default=1)
parser.add_argument('--max-queue-size', help='Queue length for multiprocessing workers in fit_generator.', type=int,
default=10)
print(vars(parser.parse_args(args)))
return check_args(parser.parse_args(args))
def main(args=None):
# parse arguments
if args is None:
args = sys.argv[1:]
args = parse_args(args)
# create the generators
train_generator, validation_generator = create_generators(args)
num_classes = train_generator.num_classes()
num_anchors = train_generator.num_anchors
# optionally choose specific GPU
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
# K.set_session(get_session())
model, prediction_model = efficientdet(args.phi,
num_classes=num_classes,
num_anchors=num_anchors,
weighted_bifpn=args.weighted_bifpn,
freeze_bn=args.freeze_bn,
detect_quadrangle=args.detect_quadrangle
)
# load pretrained weights
if args.snapshot:
if args.snapshot == 'imagenet':
model_name = 'efficientnet-b{}'.format(args.phi)
file_name = '{}_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5'.format(model_name)
file_hash = WEIGHTS_HASHES[model_name][1]
weights_path = keras.utils.get_file(file_name,
BASE_WEIGHTS_PATH + file_name,
cache_subdir='models',
file_hash=file_hash)
model.load_weights(weights_path, by_name=True)
else:
print('Loading model, this may take a second...')
model.load_weights(args.snapshot, by_name=True)
model.compile(optimizer=Adam(lr=args.lr), loss={'classification': focal()})
if args.save_ckpt:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.save(sess, './model.ckpt')
print('Saved CKPT, quiting...')
return
# freeze backbone layers
if args.freeze_backbone:
# 227, 329, 329, 374, 464, 566, 656
for i in range(1, [227, 329, 329, 374, 464, 566, 656][args.phi]):
model.layers[i].trainable = False
if args.gpu and len(args.gpu.split(',')) > 1:
model = keras.utils.multi_gpu_model(model, gpus=list(map(int, args.gpu.split(','))))
# compile model
model.compile(optimizer=Adam(lr=args.lr), loss={
'regression': smooth_l1_quad() if args.detect_quadrangle else smooth_l1(),
'classification': focal()
}, )
# print(model.summary())
# create the callbacks
callbacks = create_callbacks(
model,
prediction_model,
validation_generator,
args,
)
if not args.compute_val_loss:
validation_generator = None
elif args.compute_val_loss and validation_generator is None:
raise ValueError('When you have no validation data, you should not specify --compute-val-loss.')
# start training
return model.fit_generator(
generator=train_generator,
steps_per_epoch=args.steps,
initial_epoch=0,
epochs=args.epochs,
verbose=1,
callbacks=callbacks,
workers=args.workers,
use_multiprocessing=args.multiprocessing,
max_queue_size=args.max_queue_size,
validation_data=validation_generator
)
if __name__ == '__main__':
main()