forked from nivosco/EfficientDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_frozen_graph.py
91 lines (73 loc) · 3.11 KB
/
inference_frozen_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import tensorflow as tf
import numpy as np
import cv2
import os
import time
from utils import preprocess_image
from tensorflow.python.platform import gfile
from utils.anchors import anchors_for_shape
from utils.draw_boxes import draw_boxes
from utils.post_process_boxes import post_process_boxes
def get_frozen_graph(graph_file):
with tf.gfile.FastGFile(graph_file, "rb") as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
return graph_def
def main():
phi = 1
model_path = 'checkpoints/2019-12-03/pascal_05.pb'
image_sizes = (512, 640, 768, 896, 1024, 1280, 1408)
image_size = image_sizes[phi]
classes = [
'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train',
'tvmonitor',
]
num_classes = len(classes)
score_threshold = 0.5
colors = [np.random.randint(0, 256, 3).tolist() for i in range(num_classes)]
output_names = {
'output_boxes': 'filtered_detections/map/TensorArrayStack/TensorArrayGatherV3:0',
'output_scores': 'filtered_detections/map/TensorArrayStack_1/TensorArrayGatherV3:0',
'output_labels': 'filtered_detections/map/TensorArrayStack_2/TensorArrayGatherV3:0'
}
graph = tf.Graph()
graph.as_default()
sess = tf.Session()
graph = get_frozen_graph(model_path)
tf.import_graph_def(graph, name='')
output_boxes = sess.graph.get_tensor_by_name(output_names["output_boxes"])
output_scores = sess.graph.get_tensor_by_name(output_names['output_scores'])
output_labels = sess.graph.get_tensor_by_name(output_names['output_labels'])
image_path = 'datasets/VOC2007/JPEGImages/000002.jpg'
image = cv2.imread(image_path)
src_image = image.copy()
image = image[:, :, ::-1]
h, w = image.shape[:2]
image, scale, offset_h, offset_w = preprocess_image(image, image_size=image_size)
anchors = anchors_for_shape((image_size, image_size))
# run network
start = time.time()
image_batch = np.expand_dims(image, axis=0)
anchors_batch = np.expand_dims(anchors, axis=0)
feed_dict = {"input_1:0": image_batch, "input_4:0": anchors_batch}
boxes, scores, labels = sess.run([output_boxes, output_scores, output_labels], feed_dict)
boxes, scores, labels = np.squeeze(boxes), np.squeeze(scores), np.squeeze(labels)
print(time.time() - start)
boxes = post_process_boxes(boxes=boxes,
scale=scale,
offset_h=offset_h,
offset_w=offset_w,
height=h,
width=w)
# select indices which have a score above the threshold
indices = np.where(scores[:] > score_threshold)[0]
# select those detections
boxes = boxes[indices]
labels = labels[indices]
draw_boxes(src_image, boxes, scores, labels, colors, classes)
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image', src_image)
cv2.waitKey(0)
if __name__ == '__main__':
main()