Skip to content

Latest commit

 

History

History
179 lines (137 loc) · 3.57 KB

paper_experiments_short.md

File metadata and controls

179 lines (137 loc) · 3.57 KB

general hparams

train 200k steps regularisation = default huggingface, none LR = {1, 5.62} x 10-6, {1, 5.62} x 10−5, {1, 5.62} x 10−4 batch size = 3.2M samples tri-stage LR (10%, 40%, 50%) for ASR, set bias of FC layer to prior of letters, freeze transformers 3k steps freeze cnn during train

pick best checkpoint during training based on 1/4 val WER + 1/4 val EER pick best LR based on 1/4 dev WER + dev EER

report eval metrics: test set ASR: librispeech test-other, switchboard? test set SKR: vox2-hard, switchboard?

loss functions: CTC-loss for ASR AAM-softmax loss for SKR MTL: lambda={0.5, 0.9} static weighting between CTC loss and AAM-softmax loss (no dwa)

Table 1

wav2vec2 BASE, 1 fc for ASR, mean-pooling + 1 FC for SKR

STL

ASR librispeech

librispeech

python run_speech.py -m \
data/module=speech_ls960h \
network=speech_wav2vec2_linear,speech_wav2vec2_linear_no_reg \
optim.algo.lr=1e-4 \
tag=asr_ls \
data.pipe.speech.train_dp.num_workers=12 \
hydra/launcher=slurm_snellius

vox2

python run_speech.py -m \
data/module=speech_vox2 \
network=speech_wav2vec2_linear,speech_wav2vec2_linear_no_reg \
optim.algo.lr=1e-4 \
tag=asr_vox \
data.pipe.speech.train_dp.num_workers=12 \
hydra/launcher=slurm_snellius

SKR

librispeech

python run_speaker.py -m \
data/module=speaker_ls960h \
network=speaker_wav2vec2_linear,speaker_wav2vec2_linear_no_reg \
optim.algo.lr=1e-4 \
tag=skr_ls \
data.pipe.speaker.train_dp.num_workers=12 \
hydra/launcher=slurm_snellius

vox2

python run_speaker.py -m \
data/module=speaker_vox2 \
network=speaker_wav2vec2_linear,speaker_wav2vec2_linear_no_reg \
optim.algo.lr=1e-4 \
tag=skr_vox \
data.pipe.speaker.train_dp.num_workers=12 \
hydra/launcher=slurm_snellius

MTL

joint

librispeech

python run_mtl_joint.py -m \
data/module=mtl_joint_ls960h \
network=mtl_joint_wav2vec2_linear,mtl_joint_wav2vec2_linear_no_reg \
optim.algo.lr=1e-4 \
tag=mtl_j_ls \
hydra/launcher=slurm_snellius

librispeech + voxceleb

python run_mtl_joint.py -m \
data/module=mtl_joint_ls960h_vox2 \
network=mtl_joint_wav2vec2_linear,mtl_joint_wav2vec2_linear_no_reg \
optim.algo.lr=1e-4 \
tag=mtl_j_ls_vox \
hydra/launcher=slurm_snellius

disjoint, 2 seconds

librispeech

python run_mtl_disjoint.py -m \
data/module=mtl_disjoint_ls960h \
network=mtl_disjoint_wav2vec2_linear,mtl_disjoint_wav2vec2_linear_no_reg \
optim.algo.lr=1e-4 \
tag=mtl_dj_ls_vox \
hydra/launcher=slurm_snellius

librispeech + voxceleb

python run_mtl_disjoint.py -m \
data/module=mtl_disjoint_ls960h_vox2 \
network=mtl_disjoint_wav2vec2_linear,mtl_disjoint_wav2vec2_linear_no_reg \
optim.algo.lr=1e-4 \
tag=mtl_dj_ls_vox \
hydra/launcher=slurm_snellius

disjoint, 10 seconds

librispeech

python run_mtl_disjoint.py -m \
data/module=mtl_disjoint_ls960h \
network=mtl_disjoint_wav2vec2_linear,mtl_disjoint_wav2vec2_linear_no_reg \
data.pipe.speaker.train_dp.chunk_size_sec=10 \
data.pipe.speaker.train_dp.batch_size=20 \
optim.algo.lr=1e-4 \
tag=mtl_dj10_ls \
hydra/launcher=slurm_snellius

librispeech + voxceleb

python run_mtl_disjoint.py -m \
data/module=mtl_disjoint_ls960h_vox2 \
network=mtl_disjoint_wav2vec2_linear,mtl_disjoint_wav2vec2_linear_no_reg \
data.pipe.speaker.train_dp.chunk_size_sec=10 \
data.pipe.speaker.train_dp.batch_size=20 \
optim.algo.lr=1e-4 \
tag=mtl_dj10_ls_vox \
hydra/launcher=slurm_snellius

Table 2

STL - 3 architectures

data=vox2

TODO

MTL disjoint:

data=ls+vox2

TODO

Table 3

all model checkpoints result from experiments in Table 1