-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2_example_private_transport_regression.py
162 lines (109 loc) · 5.03 KB
/
2_example_private_transport_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import bz2
import pickle
import numpy as np
import torch.nn
from torch_geometric.data import DataLoader
from torch_geometric.nn import GCN2Conv
import torch.nn.functional as F
import torch.optim
from sklearn.metrics import mean_absolute_error, r2_score
TRANSPORT_MODE = 0 # <------------------------------------------------------------- SET TO 1 FOR PUBLIC TRANSPORTATION
# First load in data
with bz2.BZ2File("1_data_regression.pbz2", 'rb') as handle:
data_dic = pickle.load(handle)
training_loader = DataLoader(data_dic["training"], batch_size=32, shuffle=True)
validation_loader = DataLoader(data_dic["validation"], batch_size=1, shuffle=False)
validation_extras = data_dic["validation_extras"]
test_loader = DataLoader(data_dic["test"], batch_size=1, shuffle=False)
test_extras = data_dic["test_extras"]
output_scaling = data_dic["output_scaling_prt"] if TRANSPORT_MODE == 0 else data_dic["output_scaling_put"]
num_input_features = data_dic["training"][0].num_node_features
num_output_features = 1
# Define GNN - using GCNII as we need larger depths
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class GCN(torch.nn.Module):
def __init__(self, hidden_channels=128, num_layers=20, alpha=0.1, theta=1.5, dropout=0.5):
super(GCN, self).__init__()
self.lin1 = torch.nn.Linear(num_input_features, hidden_channels)
self.convs = torch.nn.ModuleList()
for layer in range(num_layers):
self.convs.append(
GCN2Conv(hidden_channels, alpha=alpha, theta=theta, layer=layer + 1, shared_weights=True,
normalize=True)
)
self.dropout = dropout
self.lin_prt_1 = torch.nn.Linear(hidden_channels, hidden_channels)
self.lin_prt_2 = torch.nn.Linear(hidden_channels, num_output_features)
def forward(self, data):
x_0, edge_index, edge_weight = data.x, data.edge_index, data.edge_attr
x = x_1 = self.lin1(x_0)
for idx in range(0, len(self.convs), 1):
conv = self.convs[idx]
x = F.dropout(x, p=self.dropout, training=self.training)
x = conv(x, x_1, edge_index, edge_weight)
x = x.relu()
prt_x = self.lin_prt_1(x)
prt_x = prt_x.relu()
prt_x = self.lin_prt_2(prt_x)
return F.log_softmax(prt_x, dim=1)
# Run training cycle
gcn = GCN().to(device)
gcn.train()
criterion1 = torch.nn.MSELoss()
optimizer = torch.optim.Adam(gcn.parameters(), lr=0.005)
# Training
running_loss = 0.0
min_pred_val = 10.0 # Skip [0, 10) veh/h due to class imbalance, and as we have good predictor for this
min_pred_val_processed = torch.tensor(min_pred_val) * 1.0 / output_scaling
print("Started training")
for epoch in range(300): # Training loop - would take a couple of hours - for exploring try setting lower value here
running_loss = 0.0
for i, data in enumerate(training_loader, 0):
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs_prt = gcn(data.to(device))
# Apply mask, skip bucket [0,10) veh/h
mask_low_vals = data.y[:, TRANSPORT_MODE] > min_pred_val_processed
final_mask = torch.logical_and(mask_low_vals, data.mask.to(torch.bool))
# Apply mask
outputs_prt = torch.squeeze(outputs_prt[final_mask, :])
y = data.y[:, TRANSPORT_MODE][final_mask]
loss_prt = criterion1(outputs_prt, y)
loss = loss_prt
loss.backward()
optimizer.step()
# get statistics
running_loss += loss.item()
running_loss = running_loss/len(training_loader)
print("Epoch: " + str(epoch) + " running_loss: " + str(running_loss))
# Get validation results
predicted_outputs_values_weighted = []
true_outputs_prt_values = []
gcn.eval()
for idx, data in zip(range(len(validation_loader)), validation_loader): # <------- For test set insert test_loader here
with torch.no_grad():
pred = gcn(data.to(device))
pred = pred.cpu()
data = data.cpu()
y = data.y[:, TRANSPORT_MODE]
data.mask = data.mask.to(torch.bool)
# Apply post processing
pred_masked = pred[data.mask]
y_masked = y[data.mask]
pred_masked = pred_masked * output_scaling
y_masked = y_masked * output_scaling
# Mask low values out
y_low_mask = y_masked >= min_pred_val
y_masked = y_masked[y_low_mask]
pred_masked = pred_masked[y_low_mask]
predicted_outputs_values_weighted.extend(pred_masked.numpy()[:, 0])
true_outputs_prt_values.extend(y_masked.numpy())
# Calculate and report scores
true_outputs_prt_values = np.asarray(true_outputs_prt_values)
predicted_outputs_values_weighted = np.asarray(predicted_outputs_values_weighted)
rec_mae_weighted = mean_absolute_error(true_outputs_prt_values, predicted_outputs_values_weighted)
rec_r2_weighted = r2_score(true_outputs_prt_values, predicted_outputs_values_weighted)
print("Results")
print("MAE >= 10 veh/h: " + str(rec_mae_weighted))
print("R^2 >= 10 veh/h: " + str(rec_r2_weighted))