-
Notifications
You must be signed in to change notification settings - Fork 0
/
Test_Formulae.thy
643 lines (552 loc) · 26 KB
/
Test_Formulae.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
(* Title: Separation-Logic-Formalization/Test_Formulae.thy
Author: Nicolas Amat, Mnacho Echenim, Nicolas Peltier
*)
section \<open>Test Formulae\<close>
text \<open>This section contains the test formulas and literals.\<close>
theory Test_Formulae
imports
Formula
Formula_Relation
"HOL-Library.Extended_Nat"
begin
subsection \<open>Points-to Relations in the Heap\<close>
definition points_to :: "'var \<Rightarrow> ('var, 'k) vec \<Rightarrow> ('var, 'k::finite) sl_formula"
where "points_to x y = sl_conj (sl_mapsto x y) sl_true"
subsection \<open>Allocation\<close>
definition alloc :: "'var \<Rightarrow> ('var, 'k::finite) sl_formula"
where "alloc x = sl_magic_wand (sl_mapsto x (vec x)) sl_false"
subsection \<open>Cardinality Constraint\<close>
fun card_heap_ge :: "nat \<Rightarrow> ('var, 'k::finite) sl_formula"
where
"card_heap_ge (Suc n) = sl_conj (card_heap_ge n) (sl_not sl_emp)"
| "card_heap_ge 0 = sl_true"
fun ext_card_heap_ge :: "enat \<Rightarrow> ('var, 'k::finite) sl_formula"
where
"ext_card_heap_ge \<infinity> = sl_false"
| "ext_card_heap_ge n = card_heap_ge n"
subsection \<open>Test Formulae Set\<close>
inductive_set test_formulae :: "('var, 'k::finite) sl_formula set"
where
"(points_to x y) \<in> test_formulae"
| "(alloc x) \<in> test_formulae"
| "(ext_card_heap_ge n) \<in> test_formulae"
| "(sl_eq x y) \<in> test_formulae"
subsection \<open>Proposition 1\<close>
subsubsection \<open>Proposition 1 Part 1\<close>
lemma tf_prop_1_1:
fixes I::"('var, 'addr, 'k::finite) interp"
and x::"'var"
and y::"('var, 'k) vec"
shows "(evaluation I (points_to x y))
= (store_and_heap I x = Some (store_vector (store I) y))"
proof
assume "evaluation I (points_to x y)"
hence "evaluation I (sl_conj (sl_mapsto x y) sl_true)"
by (simp add: points_to_def)
from this obtain h1 h2 where def_0: "(union_heaps h1 h2 = heap I)
\<and> (disjoint_heaps h1 h2)
\<and> (evaluation (to_interp (store I) h1) (sl_mapsto x y))
\<and> (evaluation (to_interp (store I) h2) (sl_true))"
using evaluation.simps(9) by blast
hence "(store I x \<in> h_dom h1) \<and> (h_dom h1 \<subseteq> h_dom (heap I))"
by (metis evaluation.simps(8) heap_on_to_interp singletonI store_on_to_interp sub_heap_included)
hence "store_and_heap I x = store_and_heap (to_interp (store I) h1) x"
by (metis (no_types, lifting) Abs_heaps_inverse Rep_heaps a_heap_def
commutative_union_disjoint_heaps def_0 dom_map_add evaluation.simps(8)
finite_Un heap_on_to_interp map_add_find_right mem_Collect_eq store_on_to_interp
store_and_heap_with_Rep_heaps union_heaps_def)
thus "(store_and_heap I x = Some (store_vector (store I) y))"
by (metis def_0 evaluation.simps(8) store_on_to_interp)
next
assume asm: "(store_and_heap I x = Some (store_vector (store I) y))"
define h1 where "h1 = h_singleton (store I x) (store_vector (store I) y)"
define h2 where "h2 = remove_from_heap (heap I) (store I x)"
have dijsoint_heaps_from_h:"(union_heaps h1 h2 = heap I) \<and> (disjoint_heaps h1 h2)"
unfolding h1_def h2_def
by (metis asm disjoint_add_remove_element dom_store_and_heap h_singleton_add_to_heap
store_and_heap_def union_add_remove_element)
hence "evaluation (to_interp (store I) h1) (sl_mapsto x y)" unfolding h1_def
by (simp add: get_from_add_to_heap h_dom_add_not_contained_element h_dom_empty_heap
heap_on_to_interp store_and_heap_h store_on_to_interp h_singleton_add_to_heap)
moreover have "evaluation (to_interp (store I) h2) (sl_true)"
by simp
ultimately show "evaluation I (points_to x y)"
by (metis evaluation.simps(9) points_to_def dijsoint_heaps_from_h)
qed
subsubsection \<open>Proposition 1 Part 2\<close>
lemma tf_prop_1_2:
fixes I::"('var, 'addr, 'k::finite) interp"
and x::"'var"
shows "(evaluation I (alloc x))
= ((store I) x \<in> (h_dom (heap I)))"
proof
assume "evaluation I (alloc x)"
thus "(store I) x \<in> (h_dom (heap I))"
proof (rule rev_notE)
let ?P = "evaluation I (alloc x)"
assume asm: "(store I) x \<notin> (h_dom (heap I))"
define h_L::"('addr, 'k) heaps" where "h_L = add_to_heap h_empty (store I x) (store_vector (store I) (vec x))"
have dom_h_L: "h_dom h_L = {(store I) x}"
by (simp add: h_L_def h_dom_add_not_contained_element h_dom_empty_heap)
moreover have "store_and_heap (to_interp (store I) h_L) x = Some (store_vector (store I) (vec x))"
by (simp add: get_from_add_to_heap h_L_def store_and_heap_h)
ultimately have evl_mapsto: "evaluation (to_interp (store I) h_L) (sl_mapsto x (vec x))"
by (simp add: heap_on_to_interp store_on_to_interp)
have "disjoint_heaps (heap I) h_L"
by (simp add: asm disjoint_heaps_def dom_h_L)
have "evaluation (to_interp (store I) h_L) (sl_mapsto x (vec x))"
using evl_mapsto by blast
define h1 where "h1 = union_heaps (heap I) h_L"
have "\<not>(evaluation (to_interp (store I) h1) sl_false)"
by simp
thus "\<not>(evaluation I (alloc x))" unfolding alloc_def
using evl_mapsto asm disjoint_heaps_def dom_h_L by fastforce
qed
next
assume "(store I) x \<in> (h_dom (heap I))"
thus "evaluation I (alloc x)"
by (simp add: alloc_def disjoint_heaps_def heap_on_to_interp store_on_to_interp)
qed
subsubsection \<open>Proposition 1 Part 3\<close>
lemma tf_prop_1_3:
fixes I::"('var, 'addr, 'k::finite) interp"
and n::enat
shows "(evaluation I (ext_card_heap_ge n))
= (card_heap (heap I) \<ge> n)"
proof
assume "evaluation I (ext_card_heap_ge n)"
thus "card_heap (heap I) \<ge> n"
proof (induct n arbitrary: I)
case (enat nat)
then show ?case
proof (induct nat arbitrary: I)
case 0
then show ?case
using zero_enat_def by auto
next
case (Suc nat)
have "evaluation I (sl_conj (card_heap_ge nat) (sl_not sl_emp))"
using Suc.prems by auto
from this obtain h1 h2
where def_0: "(disjoint_heaps h1 h2)
\<and> (union_heaps h1 h2 = heap I)
\<and> (evaluation (to_interp (store I) h1) (card_heap_ge nat))
\<and> (evaluation (to_interp (store I) h2) (sl_not sl_emp))"
using evaluation.simps(9) by blast
hence "evaluation (to_interp (store I) h1) (ext_card_heap_ge nat)"
by simp
hence "card_heap h1 \<ge> nat"
by (metis Suc.hyps heap_on_to_interp)
moreover have "card_heap h2 \<ge> 1"
using def_0 by (simp add: card_not_empty_heap heap_on_to_interp)
ultimately have "card_heap (union_heaps h1 h2) \<ge> (Suc nat)" using def_0
by (metis add.commute card_union_disjoint_heaps of_nat_Suc of_nat_eq_enat)
then show ?case
by (simp add: def_0)
qed
next
case infinity
then show ?case
by simp
qed
next
assume "card_heap (heap I) \<ge> n"
thus "evaluation I (ext_card_heap_ge n)"
proof (induction n arbitrary : I)
case (enat nat)
then show ?case
proof (induction nat arbitrary : I)
case 0
then show ?case
by simp
next
case (Suc nat)
have "h_dom (heap I) \<noteq> {}"
by (metis Suc.prems card_empty card_heap_def enat_0_iff(1) ile0_eq old.nat.distinct(2))
from this obtain l where l_def: "l \<in> h_dom (heap I)"
by blast
define h1::"('addr, 'k) heaps" where "h1 = remove_from_heap (heap I) l"
define h2::"('addr, 'k) heaps" where "h2 = restricted_heap (heap I) l"
have h_res: "heap I = (union_heaps h1 h2) \<and> (disjoint_heaps h1 h2)" unfolding h1_def h2_def
by (simp add: disjoint_remove_from_heap_restricted_heap l_def
union_remove_from_heap_restricted_heap)
hence "card_heap h1 \<ge> nat" unfolding h1_def using Suc.prems l_def
by (simp add: card_remove_from_heap)
hence h1_res:"evaluation (to_interp (store I) h1) (ext_card_heap_ge nat)"
by (metis Suc.IH heap_on_to_interp)
have "\<not>(empty_heap h2)" unfolding h2_def
by (simp add: l_def restricted_heap_not_empty)
hence h2_res:"evaluation (to_interp (store I) h2) (sl_not sl_emp)"
by (simp add: heap_on_to_interp)
from h_res and h1_res and h2_res show ?case
by auto
qed
next
case infinity
then show ?case
by (simp add: card_heap_def)
qed
qed
subsection \<open>Literals Definition\<close>
typedef ('var, 'k::finite) literal
= "{f::('var, 'k) sl_formula. f \<in> test_formulae} \<union> {(sl_not f)|f. f \<in> test_formulae}"
using test_formulae.intros(1) by fastforce
subsection \<open>Literal Casts\<close>
definition to_sl_formula :: "('var, 'k::finite) literal \<Rightarrow> ('var, 'k) sl_formula"
where "to_sl_formula f = Rep_literal f"
definition to_literal :: "('var, 'k::finite) sl_formula \<Rightarrow> ('var, 'k) literal"
where "to_literal f = Abs_literal f"
definition to_literal_set :: "('var, 'k::finite) sl_formula set \<Rightarrow> ('var, 'k) literal set"
where "to_literal_set S = {to_literal x|x. True}"
subsection \<open>Literal Atom\<close>
fun remove_first_not :: "('var, 'k::finite) sl_formula \<Rightarrow> ('var ,'k) sl_formula"
where "remove_first_not (sl_not l) = l"
| "remove_first_not l = l"
definition to_atom :: "('var, 'k::finite) literal \<Rightarrow> ('var ,'k) sl_formula"
where "to_atom l = remove_first_not (to_sl_formula l)"
subsection \<open>Literal Complement\<close>
definition literal_complement :: "('var, 'k::finite) literal \<Rightarrow> ('var, 'k) literal"
where "literal_complement l = to_literal (sl_formula_complement (to_sl_formula l))"
subsection \<open>Literal Var Set\<close>
definition literal_var_set :: "('var, 'k::finite) literal \<Rightarrow> 'var set"
where "literal_var_set l = var_set (to_sl_formula l)"
subsection \<open>Literals Evaluation\<close>
definition literal_evl :: "('var , 'addr, 'k::finite) interp \<Rightarrow> ('var, 'k) literal \<Rightarrow> bool"
where "literal_evl I l = evaluation I (to_sl_formula l)"
definition literal_set_evl :: "('var , 'addr, 'k::finite) interp \<Rightarrow> ('var, 'k) literal set \<Rightarrow> bool"
where "literal_set_evl I S = (\<forall>l\<in>S. literal_evl I l)"
subsection \<open>Literal Footprint\<close>
definition av :: "('var, 'k::finite) literal set \<Rightarrow> 'var set"
where "av T = {x1 | x1 x2. (to_literal (sl_eq x1 x2) \<in> T)
\<and> (T \<inter> ({to_literal (alloc x2)} \<union> {to_literal (points_to x2 y) | y. True})) \<noteq> {}}"
definition nv :: "('var, 'k::finite) literal set \<Rightarrow> 'var set"
where "nv T = {x1 | x1 x2. (to_literal (sl_eq x1 x2) \<in> T)
\<and> (to_literal (sl_not (alloc x2))) \<in> T}"
definition fp :: "'var set \<Rightarrow> ('var, 'k::finite) literal set \<Rightarrow> ('var, 'k) literal set"
where "fp X T = T \<inter> ({to_literal (alloc x) | x. x \<in> X}
\<union> {to_literal (sl_not (alloc x)) | x. x \<in> X}
\<union> {to_literal (points_to x y) | x y. x \<in> X}
\<union> {to_literal (sl_not (points_to x y)) | x y. x \<in> X})"
subsection \<open>Useful Results\<close>
subsubsection \<open>Cardinality Constraint\<close>
lemma heap_card_domain_card:
fixes A::"'addr set"
assumes "finite A" and "n \<le> card A"
shows "{I::('var, 'addr, 'k::finite) interp. evaluation I (ext_card_heap_ge (enat n))} \<noteq> {}"
proof -
define hfct::"'addr \<Rightarrow> (('addr, 'k) vec) option" where "hfct = (\<lambda> a. (if a\<in> A then (Some (vec a)) else None))"
have "dom hfct = A" unfolding hfct_def dom_def by simp
define mheap where "mheap = to_heap hfct"
have "h_dom mheap = A" using assms to_heap_domain \<open>dom hfct = A\<close> by (metis mheap_def)
define addr::'addr where "addr = (SOME x. x\<in> UNIV)"
define store::"('var\<Rightarrow>'addr)" where "store = (\<lambda>x. addr)"
define I where "I = to_interp store mheap"
have "evaluation I (ext_card_heap_ge (enat n))"
proof (rule tf_prop_1_3[THEN iffD2])
have "card_heap (heap I) = card (h_dom mheap)" unfolding card_heap_def unfolding I_def
by (simp add: heap_def to_interp_def)
also have "... = card A" using \<open>h_dom mheap = A\<close> by simp
also have "... \<ge> n" using assms by simp
finally have "card_heap (heap I) \<ge> n" .
thus "enat n \<le> card_heap (heap I)" by simp
qed
thus ?thesis by blast
qed
lemma heap_card_infinite_universe:
assumes "\<not>finite (UNIV::'addr set)"
shows "{I::('var, 'addr, 'k::finite) interp. evaluation I (ext_card_heap_ge (enat n))} \<noteq> {}"
proof -
have "\<exists> A::'addr set. finite A\<and> card A = n" using assms
using infinite_arbitrarily_large by blast
from this obtain A::"'addr set" where "finite A" and "card A = n" by auto
thus ?thesis using heap_card_domain_card[of A n] by simp
qed
lemma not_heap_card:
assumes "Suc 0 \<le> n"
shows "{I::('var, 'addr, 'k::finite) interp. evaluation I (sl_not (ext_card_heap_ge (enat n)))} \<noteq> {}"
proof -
define addr::'addr where "addr = (SOME x. x\<in> UNIV)"
define store::"('var\<Rightarrow>'addr)" where "store = (\<lambda>x. addr)"
define I::"('var, 'addr, 'k::finite) interp" where "I = to_interp store h_empty"
have "card_heap (heap I) = card (h_dom h_empty)" unfolding card_heap_def unfolding I_def
by (simp add: h_dom_empty_heap heap_def to_interp_def)
also have "card (h_dom h_empty) = 0" by (simp add: h_dom_empty_heap)
finally have "card_heap (heap I) = 0" by (simp add: zero_enat_def)
hence "\<not> evaluation I (ext_card_heap_ge (enat n))" using tf_prop_1_3 assms
by (metis enat_ord_simps(1) not_less_eq_eq zero_enat_def)
hence "evaluation I (sl_not (ext_card_heap_ge (enat n)))" by simp
thus ?thesis by blast
qed
lemma card_heap_bounded:
assumes "evaluation I (ext_card_heap_ge n1)"
and "evaluation I (sl_not (ext_card_heap_ge n2))"
shows "n1 < n2"
proof -
have "evaluation I (ext_card_heap_ge n1)"
by (simp add: assms(1))
moreover have "\<not>(evaluation I (ext_card_heap_ge n2))"
using assms(2) by auto
ultimately show "n1 < n2"
by (simp add: tf_prop_1_3)
qed
subsubsection \<open>Test Formulae Set\<close>
lemma test_formulae_charact:
"test_formulae = {(sl_eq x y)|x y. True}
\<union> {(alloc x)|x. True}
\<union> {(points_to x y)|x y. True}
\<union> {ext_card_heap_ge n|n. True}"
proof
show "test_formulae \<subseteq> {sl_eq x y |x y. True} \<union> {alloc x |x. True} \<union> {points_to x y |x y. True} \<union> {ext_card_heap_ge n |n. True}"
by (simp add: subset_iff test_formulae.simps)
next
show "{sl_eq x y |x y. True} \<union> {alloc x |x. True} \<union> {points_to x y |x y. True} \<union> {ext_card_heap_ge n |n. True} \<subseteq> test_formulae"
using test_formulae.simps by fastforce
qed
subsubsection \<open>Literal Casts\<close>
lemma pos_literal_inv[simp]:
fixes f::"('var, 'k::finite) sl_formula"
assumes "f\<in> test_formulae"
shows "(to_sl_formula (to_literal f)) = f"
by (simp add: Abs_literal_inverse assms to_literal_def to_sl_formula_def)
lemma neg_literal_inv[simp]:
fixes f::"('var, 'k::finite) sl_formula"
assumes "f \<in> test_formulae"
shows "(to_sl_formula (to_literal (sl_not f))) = sl_not f"
by (simp add: Abs_literal_inverse assms to_literal_def to_sl_formula_def)
subsubsection \<open>Literal Atom\<close>
lemma literal_atom_cases_tmp:
"(to_literal (to_atom l) = l) \<or> to_literal (sl_not (to_atom l)) = l"
by (metis Rep_literal_inverse remove_first_not.simps(1) remove_first_not.simps(10)
remove_first_not.simps(2) remove_first_not.simps(3) remove_first_not.simps(4)
remove_first_not.simps(5) remove_first_not.simps(6) remove_first_not.simps(7)
remove_first_not.simps(8) remove_first_not.simps(9) sl_formula.exhaust
to_atom_def to_literal_def to_sl_formula_def)
lemma literal_atom_cases:
obtains l where "l = to_literal (to_atom l)" | "l = to_literal (sl_not (to_atom l))"
proof (cases "l = to_literal (to_atom l)")
case True
thus ?thesis
proof -
have f1: "\<And>s. (s::('a, 'b) sl_formula) \<notin> Collect (sup (\<lambda>s. s \<in> {s. s \<in> test_formulae}) (\<lambda>s. s \<in> {sl_not s |s. s \<in> test_formulae})) \<or> Rep_literal (Abs_literal s) = s"
using Abs_literal_inverse by blast
have "(sl_false::('a, 'b) sl_formula) \<in> test_formulae"
by (metis (no_types) ext_card_heap_ge.simps(1) test_formulae.intros(3))
then have "(sl_false::('a, 'b) sl_formula) \<in> Collect (sup (\<lambda>s. s \<in> {s. s \<in> test_formulae}) (\<lambda>s. s \<in> {sl_not s |s. s \<in> test_formulae}))"
by blast
then show ?thesis
using f1 by (metis (lifting) remove_first_not.simps(3) that(1) to_atom_def to_literal_def to_sl_formula_def)
qed
next
case False
hence "l = to_literal (sl_not (to_atom l))" using literal_atom_cases_tmp[of l] by simp
thus ?thesis using that(2) by auto
qed
lemma to_atom_is_test_formula:
fixes l::"('var, 'k::finite) literal"
shows "(to_atom l) \<in> test_formulae"
proof (cases "to_sl_formula l \<in> test_formulae")
case False
have "\<And>l. (\<exists>s. Rep_literal (l::('var, 'k) literal) = sl_not s \<and> s \<in> test_formulae) \<or> Rep_literal l \<in> test_formulae"
using Rep_literal by blast
then show ?thesis
by (metis (no_types) False remove_first_not.simps(1) to_atom_def to_sl_formula_def)
next
case True
have "to_atom l = to_sl_formula l" using True
proof
{
fix x y
assume "to_sl_formula l = points_to x y"
show "to_atom l = to_sl_formula l"
by (simp add: \<open>to_sl_formula l = points_to x y\<close> points_to_def to_atom_def)
}
{
fix x
assume "to_sl_formula l = alloc x"
show "to_atom l = to_sl_formula l"
by (simp add: \<open>to_sl_formula l = alloc x\<close> alloc_def to_atom_def)
}
{
fix n
assume "to_sl_formula l = (ext_card_heap_ge n::(('var, 'k::finite) sl_formula))"
show "to_atom l = to_sl_formula l"
proof (cases "n = \<infinity>")
case True
then show ?thesis
by (simp add: \<open>to_sl_formula l = ext_card_heap_ge n\<close> to_atom_def)
next
case False
show ?thesis
proof (cases "n = 0")
case True
then show ?thesis
by (simp add: \<open>to_sl_formula l = ext_card_heap_ge n\<close> to_atom_def zero_enat_def)
next
case False
then show ?thesis
by (metis \<open>to_sl_formula l = ext_card_heap_ge n\<close> card_heap_ge.elims
ext_card_heap_ge.simps(1) ext_card_heap_ge.simps(2) not_infinity_eq
remove_first_not.simps(2) remove_first_not.simps(3) remove_first_not.simps(9) to_atom_def)
qed
qed
}
{
fix x y
assume "to_sl_formula l = sl_eq x y"
thus "to_atom l = to_sl_formula l"
by (simp add: to_atom_def)
}
qed
thus ?thesis using True
by simp
qed
subsection \<open>Propostions\<close>
subsubsection \<open>Propostion 3\<close>
(* Case 1 *)
lemma extended_heap_alloc:
assumes "\<not>(evaluation (to_interp (store I) (union_heaps (heap I) h)) (alloc x))"
shows "\<not>(evaluation I (alloc x))"
proof -
have "h_dom (heap I) \<subseteq> h_dom (union_heaps (heap I) h)"
by (simp add: sub_heap_included)
thus "\<not>(evaluation I (alloc x))"
by (metis assms heap_on_to_interp set_mp store_on_to_interp tf_prop_1_2)
qed
(* Case 2 *)
lemma union_heaps_associative:
fixes h1::"('addr, 'k) heaps"
and h2::"('addr, 'k) heaps"
and h3::"('addr, 'k) heaps"
shows "(union_heaps h1 (union_heaps h2 h3)) = (union_heaps (union_heaps h1 h2) h3)"
proof -
have "\<And>h. finite (dom (Rep_heaps (h::('addr, 'k) heaps)))"
using Rep_heaps a_heap_def by blast
then show ?thesis
by (simp add: Abs_heaps_inverse a_heap_def union_heaps_def)
qed
lemma h_dom_union_heaps:
"h_dom (union_heaps h1 h2) = h_dom h1 \<union> h_dom h2"
proof
show "h_dom (union_heaps h1 h2) \<subseteq> h_dom h1 \<union> h_dom h2"
proof
fix x
assume "x \<in> h_dom (union_heaps h1 h2)"
hence "x \<in> dom ((Rep_heaps h1) ++ (Rep_heaps h2))"
by (metis CollectD Rep_heaps a_heap_def dom_map_add finite_Un to_heap_def to_heap_domain
union_heaps_def)
hence "x \<in> dom (Rep_heaps h1) \<or> x \<in> dom (Rep_heaps h2)"
by auto
hence "x \<in> h_dom h1 \<or> x \<in> h_dom h2"
by (metis CollectD Rep_heaps Rep_heaps_inverse a_heap_def to_heap_def to_heap_domain)
thus "x \<in> (h_dom h1 \<union> h_dom h2)"
by simp
qed
next
show " h_dom h1 \<union> h_dom h2 \<subseteq> h_dom (union_heaps h1 h2)"
proof
fix x
assume "x \<in> (h_dom h1 \<union> h_dom h2)"
hence "x \<in> dom (Rep_heaps h1) \<union> dom (Rep_heaps h2)"
by (metis CollectD Rep_heaps Rep_heaps_inverse a_heap_def to_heap_def to_heap_domain)
hence "x \<in> dom ((Rep_heaps h1) ++ (Rep_heaps h2))"
by auto
hence "x \<in> h_dom (Abs_heaps ((Rep_heaps h1) ++ (Rep_heaps h2)))"
by (metis CollectD Rep_heaps a_heap_def dom_map_add finite_UnI to_heap_def to_heap_domain)
thus "x \<in> h_dom (union_heaps h1 h2)"
by (simp add: union_heaps_def)
qed
qed
lemma h_dom_union_heaps_in_one_h_dom:
assumes "x \<in> h_dom (union_heaps h1 h2)"
shows "x \<in> h_dom h1 \<or> x \<in> h_dom h2"
proof (rule ccontr)
assume asm:"\<not>(x \<in> h_dom h1 \<or> x \<in> h_dom h2)"
hence "x \<notin> h_dom h1 \<and> x \<notin> h_dom h2"
by auto
moreover have "h_dom (union_heaps h1 h2) = h_dom h1 \<union> h_dom h2"
by (simp add: h_dom_union_heaps)
ultimately show False
using assms by blast
qed
lemma disjoint_heaps_union_heaps:
assumes "disjoint_heaps (union_heaps h1 h2) h3"
and "disjoint_heaps h1 h2"
shows "disjoint_heaps h1 (union_heaps h2 h3)"
proof (rule ccontr)
assume asm:"\<not>(disjoint_heaps h1 (union_heaps h2 h3))"
obtain x where in_1:"x \<in> h_dom h1"
and in_2:"x \<in> h_dom (union_heaps h2 h3)"
by (meson Int_emptyI asm disjoint_heaps_def)
hence "x \<in> (h_dom h2) \<or> x \<in> (h_dom h3)"
by (simp add: h_dom_union_heaps_in_one_h_dom)
moreover have "x \<in> (h_dom h2) \<longrightarrow> \<not>(disjoint_heaps h1 h2)"
by (meson disjoint_heaps_def disjoint_iff_not_equal in_1)
moreover have "x \<in> (h_dom h3) \<longrightarrow> \<not>(disjoint_heaps (union_heaps h1 h2) h3)"
by (meson contra_subsetD disjoint_heaps_def disjoint_iff_not_equal in_1 sub_heap_included)
ultimately show False
using assms(1) assms(2) by blast
qed
lemma extended_heap_points_to:
assumes "\<not>(evaluation (to_interp (store I) (union_heaps (heap I) h)) (points_to x y))"
and "disjoint_heaps (heap I) h"
shows "\<not>(evaluation I (points_to x y))"
proof (rule ccontr)
assume "\<not>(\<not>(evaluation I (points_to x y)))"
hence "evaluation I (points_to x y)"
by auto
from this obtain h1 h2 where def_1:"(union_heaps h1 h2 = heap I)
\<and> (disjoint_heaps h1 h2)
\<and> (evaluation (to_interp (store I) h1) (sl_mapsto x y))
\<and> (evaluation (to_interp (store I) h2) sl_true)"
by (metis evaluation.simps(9) points_to_def)
define h3 where "h3 = union_heaps h2 h"
have union_heaps_h1_h3:"(union_heaps h1 h3) = (union_heaps (heap I) h)"
by (simp add: def_1 h3_def union_heaps_associative)
have "disjoint_heaps h1 h3" unfolding h3_def
by (simp add: assms(2) def_1 disjoint_heaps_union_heaps)
hence def_2:"(union_heaps h1 h3 = union_heaps (heap I) h)
\<and> (disjoint_heaps h1 h3)
\<and> (evaluation (to_interp (store I) h1) (sl_mapsto x y))
\<and> (evaluation (to_interp (store I) h3) sl_true)"
using union_heaps_h1_h3 def_1 evaluation.simps(1) by blast
have "evaluation (to_interp (store I) (union_heaps (heap I) h)) (points_to x y)"
by (metis (no_types, lifting) def_2 evaluation.simps(9) heap_on_to_interp points_to_def store_on_to_interp)
thus False
using assms by blast
qed
(* Case 3 *)
lemma extended_heap_not_points_to:
assumes "\<not>(evaluation (to_interp (store I) (union_heaps (heap I) h)) (sl_not (points_to x y)))"
and "disjoint_heaps (heap I) h"
shows "\<not>(evaluation I (sl_not (points_to x y)))"
sorry
(* Case 4 *)
(* Prop 3 *)
lemma tf_prop_3:
fixes T::"('var, 'k::finite) literal set"
and I::"('var, 'addr, 'k) interp"
and h::"('addr, 'k) heaps"
assumes "literal_set_evl I (fp (av T) T)"
and "disjoint_heaps (heap I) h"
shows "literal_set_evl (to_interp (store I) (union_heaps (heap I) h)) (fp (av T) T)"
proof (rule ccontr)
assume "\<not>(literal_set_evl (to_interp (store I) (union_heaps (heap I) h)) (fp (av T) T))"
from this obtain l where l_in_fp: "l \<in> (fp (av T) T)"
and l_evl: "\<not>(literal_evl (to_interp (store I) (union_heaps (heap I) h)) l)"
using literal_set_evl_def by blast
have case_1: "\<exists>x. l = to_literal (alloc x) \<longrightarrow> \<not>(literal_set_evl I (fp (av T) T))"
by (metis extended_heap_alloc l_evl l_in_fp literal_evl_def literal_set_evl_def pos_literal_inv test_formulae.intros(2))
have case_2: "\<exists>x y. l = to_literal (points_to x y) \<longrightarrow> \<not>(literal_set_evl I (fp (av T) T))"
by (metis assms(2) extended_heap_points_to l_evl l_in_fp literal_evl_def literal_set_evl_def pos_literal_inv test_formulae.intros(1))
have case_3: "\<exists>x y. l = to_literal (sl_not (points_to x y)) \<longrightarrow> \<not>(literal_set_evl I (fp (av T) T))"
by (metis assms(2) extended_heap_not_points_to l_evl l_in_fp literal_evl_def literal_set_evl_def neg_literal_inv test_formulae.intros(1))
have case_4: "\<exists>x. l = to_literal (sl_not (alloc x)) \<longrightarrow> \<not>(literal_set_evl I (fp (av T) T))"
sorry
have l_cases: "(\<exists>x. l = to_literal (alloc x)) \<or> (\<exists>x y. l = to_literal (points_to x y)) \<or> (\<exists>x y. l = to_literal (sl_not (points_to x y))) \<or> (\<exists>x. l = to_literal (sl_not (alloc x)))"
sorry
from case_1 and case_2 and case_3 and case_4 and l_cases have "\<not>(literal_set_evl I (fp (av T) T))"
sorry
thus False
using assms by blast
oops
end