-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwindturbine.py
215 lines (186 loc) · 8.47 KB
/
windturbine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import pandas as pd
import math
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate
bn = 3 #Blades number [-]
hubr = 0.05 #Hub radius [m]
bminr = 0.15 #Blade min working radius [m]
bmaxr = 0.75 #Blade max working radius [m] (Rotor radius)
bs = 13 #Blade sections [-]
uinf = 9 #Rated wind speed [m/s]
lamb = 6 #Rated lamda [-] (Omega*bmaxr/uinf)
rho=1.225 #Air density [kg/m3]
cilsec = True #If true output sections are on a cilindrical surface
pivotx = 0 #Pivot point x for airfoil rotation
pivoty = 0 #Pivot point y for airfoil rotation
# Instatntiate plot figure
fig = plt.figure()
# Read airfoil data from CSV
dataS822= pd.read_csv("dataS822.csv",header=0,names=['Re','alpha','cl','cd','eta'],sep=',')
# Data interpolation for calculation
fcd = interpolate.interp2d(dataS822.Re, dataS822.alpha, dataS822.cd, kind='quintic')
fcl = interpolate.interp2d(dataS822.Re, dataS822.alpha, dataS822.cl, kind='quintic')
feta= interpolate.interp2d(dataS822.Re, dataS822.alpha, dataS822.eta, kind='quintic')
# Grid for data plotting
Regrid= np.arange(50000, 525000, 25000)
alphagrid = np.arange(-10, 15, 1)
Remeshgrid, alphameshgrid = np.meshgrid(Regrid, alphagrid)
# Plot of airfoil "cd"
cdplot = fcd(Regrid, alphagrid)
ax221 = fig.add_subplot(221, projection='3d')
ax221.scatter(dataS822.Re,dataS822.alpha,dataS822.cd)
ax221.plot_surface(Remeshgrid,alphameshgrid,cdplot)
# Plot of airfolil "cl"
clplot = fcl(Regrid, alphagrid)
ax222 = fig.add_subplot(222, projection='3d')
ax222.scatter(dataS822.Re,dataS822.alpha,dataS822.cl)
ax222.plot_surface(Remeshgrid,alphameshgrid,clplot)
# Plot of airfoil "eta" = "cl"/"cd"
etaplot = feta(Regrid, alphagrid)
ax223 = fig.add_subplot(223, projection='3d')
ax223.scatter(dataS822.Re,dataS822.alpha,dataS822.eta)
ax223.plot_surface(Remeshgrid,alphameshgrid,etaplot)
# If needed show airfoil plot
#plt.show()
# Rated angular speed calculation
omegar = lamb*uinf/bmaxr
print('Turbine rated speed: ' + str(omegar*60/(2*math.pi)))
# This function calculate for every section of the blade some parameters. This function must be called iteratively starting from the result
# of previus call of the same function. The process may converge.
def bladesection(a_arr,a1_arr,c_arr):
print('{:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10}'.format('r', 'w', 'phi', 'Re', 'alpha', 'cd', 'cl', 'chord', 'cx', 'cy', 'newa', 'newa1', 'DeltaCp', 'Twist'))
print('---------------------------------------------------------------------------------------------------------------------------------------------------------------')
out_a_arr = np.empty(bs)
out_a1_arr = np.empty(bs)
out_c_arr = np.empty(bs)
out_cp_arr = np.empty(bs)
out_twist_arr = np.empty(bs)
for i in range(bs):
r = secr[i]
a = a_arr[i]
a1 = a1_arr[i]
c = c_arr[i]
w = math.sqrt((uinf*(1-a))**2 + (omegar*r*(1+a1))**2)
phi = math.atan((uinf*(1-a))/(omegar*r*(1+a1)))
re = w*c/1.45e-5
if re < 50000:
re = 50000
alphas = np.linspace(-10,15,100)
etas = feta(re,alphas)
#plt.plot(alphas,etas)
#plt.show()
bestalpha = alphas.item(np.argmax(etas))
cdrags = fcd(re,alphas)
clifts = fcl(re,alphas)
bestcd = cdrags.item(np.argmax(etas))
bestcl = clifts.item(np.argmax(etas))
newc = ((8*(2*math.pi*bmaxr))/(9*lamb**bestcl*bn))/(math.sqrt((4/9)+((lamb**2)*((r/bmaxr)**2)*(1+2/(9*(lamb**2)*((r/bmaxr)**2)))**2)))
out_c_arr[i]=newc
cy=bestcl*math.cos(phi)+bestcd*math.sin(phi)
cx=bestcl*math.sin(phi)-bestcd*math.cos(phi)
#B=((bn*c)/(2*math.pi*r)*((cy**2)-(((bn*newc)/(2*math.pi*r)*cx**2)/(4*(math.sin(phi))**2))/(4*(math.sin(phi))**2)))
sigmar = bn*newc/(2*math.pi*r)
B=(sigmar/(4*(math.sin(phi)**2)))*((cy**2)-((sigmar*(cx**2))/(4*math.sin(phi)**2)))
newa=B/(B+1)
out_a_arr[i]=newa
F=((bn*newc)/(2*math.pi*r)*cx/(4*math.sin(phi)*math.cos(phi)))
newa1=F/(1-F)
out_a1_arr[i]=newa1
deltacp=((4*math.pi*rho*uinf*(omegar**2)*r*newa1*(1-newa)*(r**2)*((bmaxr-bminr)/bs))-(0.5*rho*(w**2)*bestcd*math.cos(phi)*newc*bn*omegar*r*((bmaxr-bminr)/bs)))/(0.5*rho*math.pi*(bmaxr**2)*(uinf**3))
out_cp_arr[i]=deltacp
twist_ang = phi-(bestalpha*0.017453)
out_twist_arr[i] = twist_ang
print('{:<10.2f} {:<10.2f} {:<10.2f} {:<10.0f} {:<10.2f} {:<10.2f} {:<10.2f} {:<10.3f} {:<10.2f} {:<10.2f} {:<10.2f} {:<10.2f} {:<10.3f} {:<10.3f}'.format(r, w, phi/0.01745, re, bestalpha, bestcd, bestcl, newc, cx, cy, newa, newa1, deltacp, twist_ang/0.017453))
print()
results = [out_a_arr,out_a1_arr,out_c_arr,out_cp_arr,out_twist_arr]
return results
# First attempt values:
cp_0 = 0.44 #First attempt power coefficient
a_0 = 0.333 #First attempt axial induction factor
a1_0 = 0 #First attempt angular induction factor
ci_0 = 0.05 #First attempt airfoil chord
# Fill of first attemp arrays
secr = np.linspace(bminr,bmaxr,bs)
a_i=np.empty(bs)
a_i.fill(a_0)
a1_i=np.empty(bs)
a1_i.fill(a1_0)
ci_i=np.empty(bs)
ci_i.fill(ci_0)
#Instead of having a while cycle to convergence there is a for cycle (usually 10 iteration are enought)
for i in range(10):
results = bladesection(a_i,a1_i,ci_i)
a_i = results[0]
a1_i = results[1]
ci_i = results[2]
# Iteration turbine Cp (sum of section Cp)
print('Turbine Cp: ' + str(sum(results[3])))
# Read of airfoil shape from CSV
shapeS822= pd.read_csv("shapeS822.csv",header=0,names=['x','y'],sep=',')
ax224 = fig.add_subplot(224,projection='3d')
# If needed plot the loaded shape
#ax224.plot(shapeS822.x,shapeS822.y)
# Function that scale, rotate, and project airfoil shape based on a pivot point
# It save 3 series of CSV files, the first series without suffix contains the full shape for every blade section,
# the one with suffix "_A" contains the first half shape of the airfoil for every blade section,
# the one with suffix "_B" contains the other half shape of the airfoil for every blade section
def bladeddraw(c_arr,twist_arr,pivot_x,pivot_y):
fig2 = plt.figure()
fig2.tight_layout()
ax111 = fig2.add_subplot(111,projection='3d')
for j in range(bs):
x = (shapeS822.x-pivot_x)*c_arr[j]
y = (shapeS822.y-pivot_y)*c_arr[j]
x1 = x*math.cos(twist_arr[j])-y*math.sin(twist_arr[j])
y1 = y*math.cos(twist_arr[j])+x*math.sin(twist_arr[j])
#ax224.plot(x1,y1)
#sigma = (x/secr[j])*2*math.pi
sigma = np.empty(len(x1))
x2 = np.empty(len(x1))
y2 = np.empty(len(x1))
z2 = np.empty(len(x1))
for k in range(len(x1)):
sigma[k] = x1[k]/secr[j]
if cilsec:
x2[k] = 100*secr[j]*math.sin(sigma[k]) #100 convert the coordinate in [cm] but importing it in Fusion360
y2[k] = 100*y1[k] #leads to [mm] dimensions!!!!!
z2[k] = 100*secr[j]*math.cos(sigma[k])
else:
x2[k] = 100*x1[k]
y2[k] = 100*y1[k]
z2[k] = 100*secr[j]
ax224.scatter(x2,y2,z2)
coord = { 'x': x2,
'y': y2,
'z': z2
}
df = pd.DataFrame(coord, columns= ['x', 'y','z'])
fn = 'output/coord_{:.2f}'.format(secr[j]) + '.csv'
df.to_csv (fn, index = False, header=True, float_format='%.3f')
print (df)
coord_a = {'x': x2[0:31],
'y': y2[0:31],
'z': z2[0:31]
}
df = pd.DataFrame(coord_a, columns= ['x', 'y','z'])
fn = 'output/coord_{:.2f}'.format(secr[j]) + '_A.csv'
df.to_csv (fn, index = False, header=True, float_format='%.3f')
print (df)
coord_b = { 'x': x2[30:61],
'y': y2[30:61],
'z': z2[30:61]
}
df = pd.DataFrame(coord_b, columns= ['x', 'y','z'])
fn = 'output/coord_{:.2f}'.format(secr[j]) + '_B.csv'
df.to_csv (fn, index = False, header=True, float_format='%.3f')
print (df)
ax111.scatter(x2,y2,z2)
ax111.set_xlim3d([-50,50])
ax111.set_ylim3d([-50,50])
ax111.set_zlim3d([0,100])
# Call of bladedraw with calculated chords length, angles with a specific pivot point
bladeddraw(ci_i,results[4],pivotx,pivoty)
plt.tight_layout()
# Show the plot with cd, cl, eta and blade subplots
plt.show()