-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvanilla_main.py
132 lines (93 loc) · 3.93 KB
/
vanilla_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
style.use('ggplot')
X, y = make_blobs(n_samples=15, centers=3, n_features=2)
'''
1. Start at every datapoint as a cluster center
2. take mean of radius around cluster, setting that as new cluster center
3. Repeat #2 until convergence.
'''
class Mean_Shift:
def __init__(self, radius=None, radius_norm_step=100):
self.radius = radius
self.radius_norm_step = radius_norm_step
def fit(self, data):
if self.radius == None:
all_data_centroid = np.average(data, axis=0)
all_data_norm = np.linalg.norm(all_data_centroid)
self.radius = all_data_norm / self.radius_norm_step
print(self.radius)
centroids = {}
for i in range(len(data)):
centroids[i] = data[i]
weights = [i for i in range(self.radius_norm_step)][::-1]
while True:
new_centroids = []
for i in centroids:
in_bandwidth = []
centroid = centroids[i]
for featureset in data:
distance = np.linalg.norm(featureset - centroid)
if distance == 0:
distance = 0.00000000001
weight_index = int(distance / self.radius)
if weight_index > self.radius_norm_step - 1:
weight_index = self.radius_norm_step - 1
to_add = (weights[weight_index] ** 2) * [featureset]
in_bandwidth += to_add
new_centroid = np.average(in_bandwidth, axis=0)
new_centroids.append(tuple(new_centroid))
uniques = sorted(list(set(new_centroids)))
to_pop = []
for i in uniques:
for ii in [i for i in uniques]:
if i == ii:
pass
elif np.linalg.norm(np.array(i) - np.array(ii)) <= self.radius:
# print(np.array(i), np.array(ii))
to_pop.append(ii)
break
for i in to_pop:
try:
uniques.remove(i)
except:
pass
prev_centroids = dict(centroids)
centroids = {}
for i in range(len(uniques)):
centroids[i] = np.array(uniques[i])
optimized = True
for i in centroids:
if not np.array_equal(centroids[i], prev_centroids[i]):
optimized = False
if optimized:
break
self.centroids = centroids
self.classifications = {}
for i in range(len(self.centroids)):
self.classifications[i] = []
for featureset in data:
# compare distance to either centroid
distances = [np.linalg.norm(featureset - self.centroids[centroid]) for centroid in self.centroids]
classification = (distances.index(min(distances)))
# featureset that belongs to that cluster
self.classifications[classification].append(featureset)
def predict(self, data):
# compare distance to either centroid
distances = [np.linalg.norm(data - self.centroids[centroid]) for centroid in self.centroids]
classification = (distances.index(min(distances)))
return classification
clf = Mean_Shift()
clf.fit(X)
centroids = clf.centroids
print(centroids)
colors = 10 * ['r', 'g', 'b', 'c', 'k', 'y']
for classification in clf.classifications:
color = colors[classification]
for featureset in clf.classifications[classification]:
plt.scatter(featureset[0], featureset[1], marker="x", color=color, s=150, linewidths=5, zorder=10)
for c in centroids:
plt.scatter(centroids[c][0], centroids[c][1], color='k', marker="*", s=150, linewidths=5)
plt.show()