This repository has been archived by the owner on Nov 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfishers_exact_test.py
255 lines (223 loc) · 8.43 KB
/
fishers_exact_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#! /usr/bin/env python
##############################################################################
# Following functions have been taken from the DendroPy library from:
##
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.txt" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
import math
## From dendropy.mathlib.probability
def hypergeometric_pmf(x, m, n, k):
"""
Given a population consisting of `m` items of class M and `n` items of class N,
this returns the probability of observing `x` items of class M when sampling
`k` times without replacement from the entire population (i.e., {M,N})
p(x) = (choose(m, x) * choose(n, k-x)) / choose(m+n, k)
"""
# following fails with 'OverflowError: long int too large to convert to
# float' with large numbers
# return float(binomial_coefficient(m, x) * binomial_coefficient(n, k-x))/binomial_coefficient(m+n, k)
a = math.log(binomial_coefficient(m, x))
b = math.log(binomial_coefficient(n, k-x))
c = math.log(binomial_coefficient(m+n, k))
return math.exp(a+b-c)
## From dendropy.mathlib.probability
def binomial_coefficient(population, sample):
"Returns `population` choose `sample`."
s = max(sample, population - sample)
assert s <= population
assert population > -1
if s == population:
return 1
numerator = 1
denominator = 1
for i in xrange(s+1, population + 1):
numerator *= i
denominator *= (i - s)
return numerator/denominator
## From dendropy.mathlib.statistics
class FishersExactTest(object):
"""
Given a 2x2 table:
+---+---+
| a | b |
+---+---+
| c | d |
+---+---+
represented by a list of lists::
[[a,b],[c,d]]
this calculates the sum of the probability of this table and all others
more extreme under the null hypothesis that there is no association between
the categories represented by the vertical and horizontal axes.
"""
def probability_of_table(table):
"""
Given a 2x2 table:
+---+---+
| a | b |
+---+---+
| c | d |
+---+---+
represented by a list of lists::
[[a,b],[c,d]]
this returns the probability of this table under the null hypothesis of
no association between rows and columns, which was shown by Fisher to be
a hypergeometric distribution:
p = ( choose(a+b, a) * choose(c+d, c) ) / choose(a+b+c+d, a+c)
"""
a = table[0][0]
b = table[0][1]
c = table[1][0]
d = table[1][1]
return hypergeometric_pmf(a, a+b, c+d, a+c)
probability_of_table = staticmethod(probability_of_table)
def __init__(self, table):
self.table = table
self.flat_table = [table[0][0], table[0][1], table[1][0], table[1][1]]
self.min_value = min(self.flat_table)
self.max_value = max(self.flat_table)
def _rotate_cw(self, table):
"""
Returns a copy of table such that all the values
are rotated clockwise once.
"""
return [ [ table[1][0], table[0][0] ],
[table[1][1], table[0][1] ] ]
def _min_rotation(self):
"""
Returns copy of self.table such that the smallest value is in the first
(upper left) cell.
"""
table = [list(self.table[0]), list(self.table[1])]
while table[0][0] != self.min_value:
table = self._rotate_cw(table)
return table
def _max_rotation(self):
"""
Returns copy of self.table such that the largest value is in the first
(upper left) cell.
"""
table = [list(self.table[0]), list(self.table[1])]
while table[0][0] != self.max_value:
table = self._rotate_cw(table)
return table
def _sum_left_tail(self):
# left_tail_tables = self._get_left_tail_tables()
# p_vals = [ self.probability_of_table(t) for t in left_tail_tables ]
p_vals = self._get_left_tail_probs()
return sum(p_vals)
def _sum_right_tail(self):
# right_tail_tables = self._get_right_tail_tables()
# p_vals = [ self.probability_of_table(t) for t in right_tail_tables ]
p_vals = self._get_right_tail_probs()
return sum(p_vals)
def _get_left_tail_probs(self):
table = self._min_rotation()
row_totals = [sum(table[0]), sum(table[1])]
col_totals = [table[0][0] + table[1][0], table[0][1] + table[1][1]]
p_vals = []
while True:
table[0][0] -= 1
if table[0][0] < 0:
break
table[0][1] = row_totals[0] - table[0][0]
table[1][0] = col_totals[0] - table[0][0]
table[1][1] = row_totals[1] - table[1][0]
p_vals.append(self.probability_of_table(table))
return p_vals
def _get_right_tail_probs(self):
table = self._min_rotation()
row_totals = [sum(table[0]), sum(table[1])]
col_totals = [table[0][0] + table[1][0], table[0][1] + table[1][1]]
p_vals = []
while True:
table[0][0] += 1
table[0][1] = row_totals[0] - table[0][0]
if table[0][1] < 0:
break
table[1][0] = col_totals[0] - table[0][0]
if table[1][0] < 0:
break
table[1][1] = row_totals[1] - table[1][0]
if table[1][1] < 0:
break
p_vals.append(self.probability_of_table(table))
return p_vals
def _get_left_tail_tables(self):
table = self._min_rotation()
row_totals = [sum(table[0]), sum(table[1])]
col_totals = [table[0][0] + table[1][0], table[0][1] + table[1][1]]
left_tail_tables = []
while True:
table[0][0] -= 1
if table[0][0] < 0:
break
table[0][1] = row_totals[0] - table[0][0]
table[1][0] = col_totals[0] - table[0][0]
table[1][1] = row_totals[1] - table[1][0]
left_tail_tables.append([list(table[0]), list(table[1])])
return left_tail_tables
def _get_right_tail_tables(self):
table = self._min_rotation()
row_totals = [sum(table[0]), sum(table[1])]
col_totals = [table[0][0] + table[1][0], table[0][1] + table[1][1]]
right_tail_tables = []
while True:
table[0][0] += 1
table[0][1] = row_totals[0] - table[0][0]
if table[0][1] < 0:
break
table[1][0] = col_totals[0] - table[0][0]
if table[1][0] < 0:
break
table[1][1] = row_totals[1] - table[1][0]
if table[1][1] < 0:
break
right_tail_tables.append([list(table[0]), list(table[1])])
return right_tail_tables
def left_tail_p(self):
"""
Returns the sum of probabilities of this table and all others more
extreme.
"""
return self.probability_of_table(self.table) + self._sum_left_tail()
def right_tail_p(self):
"""
Returns the sum of probabilities of this table and all others more
extreme.
"""
return self.probability_of_table(self.table) + self._sum_right_tail()
def two_tail_p(self):
"""
Returns the sum of probabilities of this table and all others more
extreme.
"""
p0 = self.probability_of_table(self.table)
all_p_vals = self._get_left_tail_probs() + self._get_right_tail_probs()
p_vals = []
for p in all_p_vals:
if p <= p0:
p_vals.append(p)
return sum(p_vals) + p0
def assert_almost_equal(v1, v2, prec=8):
if abs(v1-v2) <= 10**(-prec):
print "OK: {} == {}".format(v1, v2)
else:
print "FAIL: {} != {}".format(v1, v2)
if __name__ == "__main__":
table = [[12, 5], [29, 2]]
ft = FishersExactTest(table)
assert_almost_equal(ft.left_tail_p(), 0.044554737835078267)
assert_almost_equal(ft.right_tail_p(), 0.99452520602190897)
assert_almost_equal(ft.two_tail_p(), 0.08026855207410688)