This repository has been archived by the owner on Nov 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeneSetDownloader.py
795 lines (714 loc) · 37.9 KB
/
GeneSetDownloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
###MetabolomicsParser
#Copyright 2005-2008 J. David Gladstone Institutes, San Francisco California
#Author Nathan Salomonis - [email protected]
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is furnished
#to do so, subject to the following conditions:
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
#INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
#PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""This module contains methods for reading the HMDB and storing relationships"""
import sys, string
import os.path
import unique
import export
import time
import update; reload(update)
import OBO_import
import gene_associations
import traceback
############# Common file handling routines #############
def filepath(filename):
fn = unique.filepath(filename)
return fn
def read_directory(sub_dir):
dir_list = unique.read_directory(sub_dir); dir_list2 = []
###Code to prevent folder names from being included
for entry in dir_list:
if entry[-4:] == ".txt" or entry[-4:] == ".csv": dir_list2.append(entry)
return dir_list2
def cleanUpLine(line):
line = string.replace(line,'\n','')
line = string.replace(line,'\c','')
data = string.replace(line,'\r','')
data = string.replace(data,'"','')
return data
def lowerSymbolDB(source_to_gene):
source_to_gene2={}
for symbol in source_to_gene:
source_to_gene2[string.lower(symbol)]=source_to_gene[symbol]
return source_to_gene2
def verifyFile(filename):
fn=filepath(filename); file_found = 'yes'
try:
for line in open(fn,'rU').xreadlines():break
except Exception: file_found = 'no'
return file_found
def importSpeciesData():
if program_type == 'GO-Elite': filename = 'Config/species_all.txt' ### species.txt can be cleared during updating
else: filename = 'Config/goelite_species.txt'
x=0
fn=filepath(filename);global species_list; species_list=[]; global species_codes; species_codes={}
global species_names; species_names={}
for line in open(fn,'rU').readlines():
data = cleanUpLine(line)
t = string.split(data,'\t'); abrev=t[0]; species=t[1]
if x==0: x=1
else:
species_list.append(species)
species_codes[species] = abrev
species_names[abrev] = species
def getSourceData():
filename = 'Config/source_data.txt'; x=0
fn=filepath(filename)
global source_types; source_types={}
global system_codes; system_codes={}
global mod_types; mod_types=[]
for line in open(fn,'rU').readlines():
data = cleanUpLine(line)
t = string.split(data,'\t'); source=t[0]
try: system_code=t[1]
except IndexError: system_code = 'NuLL'
if x==0: x=1
else:
if len(t)>2: ### Therefore, this ID system is a potential MOD
if t[2] == 'MOD': mod_types.append(source)
source_types[source]=system_code
system_codes[system_code] = source ###Used when users include system code data in their input file
############# File download/extraction #############
def downloadPAZARAssocations():
base_url = 'http://www.pazar.info/tftargets/'
filenames = getPAZARFileNames()
print 'Downloading Transcription Factor to Target associations'
source = 'raw'
r = 4; k = -1
for resource in filenames:
filename = filenames[resource]
url = base_url+filename
start_time = time.time()
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/PAZAR/','')
end_time = time.time()
if (end_time-start_time)>3: ### Hence the internet connection is very slow (will take forever to get everything)
downloadPreCompiledPAZAR() ### Just get the compiled symbol data instead
print '...access to source PAZAR files too slow, getting pre-compiled from genmapp.org'
source = 'precompiled'
break
k+=1
if r==k:
k=0
print '*',
print ''
return source
def downloadPreCompiledPAZAR():
""" Downloads the already merged symbol to TF file from PAZAR files """
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/tf-target.txt'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/PAZAR/symbol/','')
def downloadAmadeusPredictions():
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/symbol-Metazoan-Amadeus.txt'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Amadeus/','')
def downloadBioMarkers():
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/Hs_exon_tissue-specific_protein_coding.zip'
print 'Downloading BioMarker associations'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/BioMarkers/','')
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/Mm_gene_tissue-specific_protein_coding.zip'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/BioMarkers/','')
def downloadKEGGPathways(species):
print "Integrating KEGG associations for "+species
url = 'http://www.genmapp.org/go_elite/Databases/KEGG/'+species+'-KEGG_20110518.zip'
### This is a fixed date resource since KEGG licensed their material after this date
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/KEGG/','')
def downloadDomainAssociations(selected_species):
paths=[]
if selected_species != None: ### Restrict to selected species only
current_species_dirs=selected_species
else:
current_species_dirs = unique.read_directory('/'+database_dir)
for species in current_species_dirs:
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/Domains/'+species+'_Ensembl-Domain.gz'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Domains/','txt')
if 'Internet' not in status:
paths.append((species,fln))
return paths
def downloadPhenotypeOntologyOBO():
print 'Downloading Phenotype Ontology structure and associations'
url = 'ftp://ftp.informatics.jax.org/pub/reports/MPheno_OBO.ontology'
fln,status = update.downloadSuppressPrintOuts(url,'OBO/','')
def downloadPhenotypeOntologyGeneAssociations():
url = 'ftp://ftp.informatics.jax.org/pub/reports/HMD_HumanPhenotype.rpt'
#url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/HMD_HumanPhenotype.rpt'
### Mouse and human gene symbols and gene IDs (use the gene symbols)
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Pheno/','')
def downloadPathwayCommons():
print 'Downloading PathwayCommons associations'
url = 'http://www.pathwaycommons.org/pc-snapshot/current-release/gsea/by_species/homo-sapiens-9606-gene-symbol.gmt.zip'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/PathwayCommons/','')
def downloadDiseaseOntologyOBO():
print 'Downloading Disease Ontology structure and associations'
""" Unfortunately, we have to download versions that are not as frequently updated, since RGDs server
reliability is poor """
#url = 'ftp://rgd.mcw.edu/pub/data_release/ontology_obo_files/disease/CTD.obo'
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/CTD.obo'
### Includes congenital and environmental diseases - http://ctdbase.org/detail.go?type=disease&acc=MESH%3aD002318
fln,status = update.downloadSuppressPrintOuts(url,'OBO/','')
def downloadDiseaseOntologyGeneAssociations(selected_species):
if selected_species == None: sc = []
else: sc = selected_species
""" Unfortunately, we have to download versions that are not as frequently updated, since RGDs server
reliability is poor """
if 'Hs' in sc or len(sc)==0:
#url = 'ftp://rgd.mcw.edu/pub/data_release/annotated_rgd_objects_by_ontology/homo_genes_do'
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/homo_genes_do'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Disease/','')
if 'Mm' in sc or len(sc)==0:
#url = 'ftp://rgd.mcw.edu/pub/data_release/annotated_rgd_objects_by_ontology/mus_genes_do'
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/mus_genes_do'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Disease/','')
if 'Rn' in sc or len(sc)==0:
#url = 'ftp://rgd.mcw.edu/pub/data_release/annotated_rgd_objects_by_ontology/rattus_genes_do'
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/rattus_genes_do'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Disease/','')
def downloadMiRDatabases(species):
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/'+species+'_microRNA-Ensembl-GOElite_strict.txt'
selected = ['Hs','Mm','Rn'] ### these are simply zipped where the others are not
### These files should be updated on a regular basis
if species in selected:
url = string.replace(url,'.txt','.zip')
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/microRNATargets/','')
else:
### Where strict is too strict
url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/'+species+'_microRNA-Ensembl-GOElite_lax.txt'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/microRNATargets/','')
fln = string.replace(fln,'.zip','.txt')
return fln
def downloadGOSlimOBO():
url = 'http://www.geneontology.org/GO_slims/goslim_pir.obo'
#url = 'http://www.geneontology.org/GO_slims/goslim_generic.obo' ### Missing
fln,status = update.downloadSuppressPrintOuts(url,'OBO/','')
def importUniProtAnnotations(species_db):
base_url = 'http://www.altanalyze.org/archiveDBs/'
uniprot_ensembl_db={}
for species in species_db:
url = base_url+species+'/custom_annotations.txt'
fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/UniProt/'+species+'/','')
for line in open(fln,'rU').xreadlines():
data = cleanUpLine(line)
ens_gene,compartment,function,symbols,full_name,uniprot_name,uniprot_ids,unigene = string.split(data,'\t')
symbols = string.split(string.replace(symbols,'; Synonyms=',', '),', ')
uniprot_ensembl_db[species,uniprot_name] = ens_gene
species_extension = string.split(uniprot_name,'_')[-1]
full_name = string.split(full_name,';')[0]
if 'Transcription factor' in full_name:
symbols.append(string.split(full_name,'Transcription factor ')[-1]) ### Add this additional synonym to symbols
### Extend this database out to account for weird names in PAZAR
for symbol in symbols:
new_name = string.upper(symbol)+'_'+species_extension
if new_name not in uniprot_ensembl_db:
uniprot_ensembl_db[species,symbol+'_'+species_extension] = ens_gene
uniprot_ensembl_db[species,string.upper(symbol)] = ens_gene
return uniprot_ensembl_db
############# Import/processing/export #############
def getPAZARFileNames():
""" Filenames are manually and periodically downloaded from: http://www.pazar.info/cgi-bin/downloads_csv.pl"""
fn = filepath('Config/PAZAR_list.txt')
x=0
filenames = {}
for line in open(fn,'rU').xreadlines():
data = cleanUpLine(line)
if x==0: x=1
else:
resource, filename = string.split(data,'\t')
filenames[resource]=filename
return filenames
class TFTargetInfo:
def __init__(self,tf_name,ens_gene,project,pmid,analysis_method):
self.tf_name=tf_name
self.ens_gene=ens_gene
self.project=project
self.pmid=pmid
self.analysis_method=analysis_method
def TFName(self): return self.tf_name
def Ensembl(self): return self.ens_gene
def Project(self):
if self.project[-1]=='_':
return self.project[:-1]
else:
return self.project
def PMID(self): return self.pmid
def AnalysisMethod(self): return self.analysis_method
def __repr__(self): return self.TFName()
def importPAZARAssociations():
pazar_files = unique.read_directory('/BuildDBs/PAZAR')
species_db={}
tf_to_target={}
for file in pazar_files:
if '.csv' in file:
name = string.join(string.split(file,'_')[1:-1],'_')
fn = filepath('BuildDBs/PAZAR/'+file)
for line in open(fn,'rU').xreadlines():
data = cleanUpLine(line)
try:
### Each line contains the following 11 tab-delim fields:
### Fields are: <PAZAR TF ID> <TF Name> <PAZAR Gene ID> <ensembl gene accession> <chromosome> <gene start coordinate> <gene end coordinate> <species> <project name> <PMID> <analysis method>
pazar_tf_id, tf_name, pazar_geneid, ens_gene, chr, gene_start,gene_end,species,project,pmid,analysis_method = string.split(data,'\t')
species,genus = string.split(species,' ')
species = species[0]+genus[0]
tft=TFTargetInfo(tf_name,ens_gene,project,pmid,analysis_method)
try: tf_to_target[species,tf_name].append(tft)
except Exception: tf_to_target[species,tf_name] = [tft]
species_db[species]=[]
except Exception:
None ### Occurs due to file formatting issues (during an update?)
determine_tf_geneids = 'no'
if determine_tf_geneids == 'yes':
""" The below code is probably most useful for creation of complex regulatory inference networks in Cytoscape """
uniprot_ensembl_db = importUniProtAnnotations(species_db)
missing=[]
tf_to_target_ens={}
for (species,tf_name) in tf_to_target:
original_tf_name = tf_name
try:
ens_gene = uniprot_ensembl_db[species,tf_name]
tf_to_target_ens[ens_gene]=tf_to_target[species,tf_name]
except Exception:
try:
tf_name = string.split(tf_name,'_')[0]
ens_gene = uniprot_ensembl_db[species,tf_name]
tf_to_target_ens[ens_gene]=tf_to_target[species,original_tf_name]
except Exception:
try:
tf_names=[]
if '/' in tf_name:
tf_names = string.split(tf_name,'/')
elif ' ' in tf_name:
tf_names = string.split(tf_name,' ')
for tf_name in tf_names:
ens_gene = uniprot_ensembl_db[species,tf_name]
tf_to_target_ens[ens_gene]=tf_to_target[species,original_tf_name]
except Exception: missing.append((tf_name,species))
print 'Ensembl IDs found for UniProt Transcription factor names:',len(tf_to_target_ens),'and missing:', len(missing)
#print missing[:20]
### Translate all species data to gene symbol to export for all species
species_tf_targets={}
for (species,tf_name) in tf_to_target:
try:
tf_db = species_tf_targets[species]
tf_db[tf_name] = tf_to_target[species,tf_name]
except Exception:
tf_db = {}
tf_db[tf_name] = tf_to_target[species,tf_name]
species_tf_targets[species] = tf_db
tf_dir = 'BuildDBs/PAZAR/symbol/tf-target.txt'
tf_data = export.ExportFile(tf_dir)
tf_to_symbol={}
#print 'Exporting:',tf_dir
#print len(species_tf_targets)
for species in species_tf_targets:
try: gene_to_source_id = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol'))
except Exception: gene_to_source_id={}
tf_db = species_tf_targets[species]
for tf_name in tf_db:
for tft in tf_db[tf_name]:
try:
for symbol in gene_to_source_id[tft.Ensembl()]:
symbol = string.lower(symbol)
tf_id = tf_name+'(Source:'+tft.Project()+'-PAZAR'+')'
tf_data.write(tf_id+'\t'+symbol+'\n')
try: tf_to_symbol[tf_id].append(symbol)
except Exception: tf_to_symbol[tf_id] = [symbol]
except Exception: null=[];
tf_data.close()
tf_to_symbol = gene_associations.eliminate_redundant_dict_values(tf_to_symbol)
return tf_to_symbol
def importPAZARcompiled():
""" Skips over the above function when these tf-target file is downlaoded directly """
tf_dir = 'BuildDBs/PAZAR/symbol/tf-target.txt'
tf_to_symbol={}
fn = filepath(tf_dir)
for line in open(fn,'rU').xreadlines():
data = cleanUpLine(line)
tf_id,symbol = string.split(data,'\t')
try: tf_to_symbol[tf_id].append(symbol)
except Exception: tf_to_symbol[tf_id] = [symbol]
tf_to_symbol = gene_associations.eliminate_redundant_dict_values(tf_to_symbol)
return tf_to_symbol
def importPhenotypeOntologyGeneAssociations():
x=0
pheno_symbol={}; phen=[]
fn = filepath('BuildDBs/Pheno/HMD_HumanPhenotype.rpt')
for line in open(fn,'rU').xreadlines():
data = cleanUpLine(line)
if x==0: x=1
else:
t = string.split(data,'\t')
hs_symbol=t[0]; hs_entrez=t[1]; mm_symbol=t[2]; mgi=t[3]; pheno_ids=t[4]
hs_symbol = string.lower(hs_symbol)
mm_symbol = string.lower(mm_symbol)
symbols = [mm_symbol,hs_symbol]
pheno_ids = string.split(pheno_ids,' '); phen+=pheno_ids
for pheno_id in pheno_ids:
if len(pheno_id)>0:
for symbol in symbols:
try: pheno_symbol[pheno_id].append(symbol)
except Exception: pheno_symbol[pheno_id]=[symbol]
phen = unique.unique(phen)
pheno_symbol = gene_associations.eliminate_redundant_dict_values(pheno_symbol)
return pheno_symbol
def importAmandeusPredictions(force):
if force == 'yes':
downloadAmadeusPredictions()
x=0
tf_symbol_db={}
fn = filepath('BuildDBs/Amadeus/symbol-Metazoan-Amadeus.txt')
for line in open(fn,'rU').xreadlines():
data = cleanUpLine(line)
if x==0: x=1
else:
symbol,system,tf_name = string.split(data,'\t')
symbol = string.lower(symbol)
try: tf_symbol_db[tf_name].append(symbol)
except Exception: tf_symbol_db[tf_name]=[symbol]
tf_symbol_db = gene_associations.eliminate_redundant_dict_values(tf_symbol_db)
return tf_symbol_db
def importDiseaseOntologyGeneAssocations():
disease_ontology_files = unique.read_directory('/BuildDBs/Disease')
symbol_to_DO={}
for file in disease_ontology_files:
if '_do' in file:
fn = filepath('BuildDBs/Disease/'+file)
for line in open(fn,'rU').xreadlines():
data = cleanUpLine(line)
t = string.split(data,'\t')
if len(t)>1:
symbol=string.lower(t[2]); doid = t[4]
try: symbol_to_DO[doid].append(symbol)
except Exception: symbol_to_DO[doid]=[symbol]
return symbol_to_DO
def exportSymbolRelationships(pathway_to_symbol,selected_species,pathway_type,type):
if selected_species != None: ### Restrict to selected species only
current_species_dirs=selected_species
else:
current_species_dirs = unique.read_directory('/'+database_dir)
for species in current_species_dirs:
if '.' not in species:
ens_dir = database_dir+'/'+species+'/gene-'+type+'/Ensembl-'+pathway_type+'.txt'
ens_data = export.ExportFile(ens_dir)
if 'mapp' in type: ens_data.write('GeneID\tSystem\tGeneSet\n')
else: ens_data.write('GeneID\tGeneSet\n')
try: ens_to_entrez = gene_associations.getGeneToUid(species,('hide','Ensembl-EntrezGene'))
except Exception: ens_to_entrez ={}
if len(ens_to_entrez)>0:
entrez_dir = database_dir+'/'+species+'/gene-'+type+'/EntrezGene-'+pathway_type+'.txt'
entrez_data = export.ExportFile(entrez_dir)
if 'mapp' in type: entrez_data.write('GeneID\tSystem\tGeneSet\n')
else: entrez_data.write('GeneID\tGeneSet\n')
#print 'Exporting '+pathway_type+' databases for:',species
try: gene_to_source_id = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol'))
except Exception: gene_to_source_id={}
source_to_gene = OBO_import.swapKeyValues(gene_to_source_id)
source_to_gene = lowerSymbolDB(source_to_gene)
for pathway in pathway_to_symbol:
for symbol in pathway_to_symbol[pathway]:
try:
genes = source_to_gene[symbol]
for gene in genes:
if 'mapp' in type: ens_data.write(gene+'\tEn\t'+pathway+'\n')
else: ens_data.write(gene+'\t'+pathway+'\n')
if gene in ens_to_entrez:
for entrez in ens_to_entrez[gene]:
if 'mapp' in type: entrez_data.write(entrez+'\tL\t'+pathway+'\n')
else: entrez_data.write(entrez+'\t'+pathway+'\n')
except Exception: null=[]
ens_data.close()
try: entrez_data.close()
except Exception: null=[]
def extractKEGGAssociations(species,mod,system_codes):
import_dir = filepath('/BuildDBs/KEGG')
g = gene_associations.GrabFiles(); g.setdirectory(import_dir)
filedir = g.getMatchingFolders(species)
gpml_data,pathway_db = gene_associations.parseGPML(filepath(filedir))
gene_to_WP = gene_associations.unifyGeneSystems(gpml_data,species,mod)
gene_associations.exportCustomPathwayMappings(gene_to_WP,mod,system_codes,filepath(database_dir+'/'+species+'/gene-mapp/'+mod+'-KEGG.txt'))
def extractGMTAssociations(species,mod,system_codes,data_type):
if mod != 'HMDB':
import_dir = filepath('/BuildDBs/'+data_type)
gmt_data = gene_associations.parseGMT(import_dir)
gene_to_custom = gene_associations.unifyGeneSystems(gmt_data,species,mod)
gene_associations.exportCustomPathwayMappings(gene_to_custom,mod,system_codes,filepath(database_dir+'/'+species+'/gene-mapp/'+mod+'-'+data_type+'.txt'))
def transferGOSlimGeneAssociations(selected_species):
if selected_species != None: ### Restrict to selected species only
current_species_dirs=selected_species
else:
current_species_dirs = unique.read_directory('/'+database_dir)
for species_code in current_species_dirs:
try:
ens_go_file_dir = filepath(database_dir+'/'+species_code+'/gene-go/Ensembl-GOSlim.txt')
goslim_ens_file = filepath(database_dir+'/'+species_code+'/uid-gene/Ensembl-goslim_goa.txt')
export.copyFile(goslim_ens_file,ens_go_file_dir)
translateToEntrezGene(species_code,ens_go_file_dir)
except Exception: null=[]
def translateToEntrezGene(species,filename):
x=0; type = 'pathway'
try: ens_to_entrez = gene_associations.getGeneToUid(species,('hide','Ensembl-EntrezGene'))
except Exception: ens_to_entrez ={}
if len(ens_to_entrez)>0:
export_file = string.replace(filename,'Ensembl','EntrezGene')
export_data = export.ExportFile(export_file)
export_data.write('EntrezGene\tOntologyID\n')
fn = filepath(filename)
for line in open(fn,'rU').xreadlines():
if x==0: x=1
else:
data = cleanUpLine(line)
try:
ensembl,pathway = string.split(data,'\t')
type = 'ontology'
except Exception:
ensembl,null,pathway = string.split(data,'\t')
try:
entrezs = ens_to_entrez[ensembl]
for entrez in entrezs:
if type == 'ontology':
export_data.write(entrez+'\t'+pathway+'\n')
else:
export_data.write(entrez+'\tEn\t'+pathway+'\n')
except Exception:
null=[]
export_data.close()
def importMiRGeneAssociations(species_code,source_path):
try:
destination_path = filepath(database_dir+'/'+species_code+'/gene-mapp/Ensembl-microRNATargets.txt')
export.copyFile(source_path,destination_path)
translateToEntrezGene(species_code,destination_path)
except Exception: null=[]
def importBioMarkerGeneAssociations():
try:
biomarker_files = unique.read_directory('BuildDBs/BioMarkers/')
except Exception:
biomarker_files = unique.read_directory('/BuildDBs/BioMarkers/')
x=0; marker_symbol_db={}
for file in biomarker_files:
if '.txt' in file:
fn = filepath('BuildDBs/BioMarkers/'+file)
for line in open(fn,'rU').xreadlines():
data = cleanUpLine(line)
t = string.split(data,'\t')
if x==0:
x = 1; y=0
for i in t:
if 'marker-in' in i: mi = y
if 'Symbol' in i: sy = y
y+=1
ensembl = t[0]; symbol = string.lower(t[sy]); marker = t[mi]
markers = string.split(marker,'|')
for marker in markers:
try: marker_symbol_db[marker].append(symbol)
except Exception: marker_symbol_db[marker]=[symbol]
marker_symbol_db = gene_associations.eliminate_redundant_dict_values(marker_symbol_db)
return marker_symbol_db
def importDomainGeneAssociations(species_code,source_path):
try:
destination_path = filepath(database_dir+'/'+species_code+'/gene-mapp/Ensembl-Domains.txt')
export.copyFile(source_path,destination_path)
translateToEntrezGene(species_code,destination_path)
except Exception: null=[]
############# Central buid functions #############
def importWikiPathways(selected_species,force):
if selected_species == None:
selected_species = unique.read_directory('/'+database_dir)
importSpeciesData()
getSourceData()
all_species = 'no'
if force == 'yes':
try:
gene_associations.convertAllGPML(selected_species,all_species) ### Downloads GPMLs and builds flat files
status = 'built'
except IOError:
print 'Unable to connect to http://www.wikipathways.org'
status = 'failed'
status = 'built'
if status == 'built':
import BuildAffymetrixAssociations
for species_code in selected_species:
species_name = species_names[species_code]
if status == 'built':
relationship_types = ['native','mapped']
for relationship_type in relationship_types:
#print 'Processing',relationship_type,'relationships'
index=0
integrate_affy_associations = 'no'
incorporate_previous = 'yes'
process_affygo = 'no'
counts = BuildAffymetrixAssociations.importWikipathways(source_types,incorporate_previous,process_affygo,species_name,species_code,integrate_affy_associations,relationship_type,'over-write previous')
index+=1
print 'Finished integrating updated WikiPathways'
def importKEGGAssociations(selected_species,force):
supported_databases = ['Ag','At','Ce','Dm','Dr','Hs','Mm','Os','Rn']
getSourceData()
if selected_species != None: ### Restrict by selected species
supported_databases2=[]
for species in selected_species:
if species in supported_databases:
supported_databases2.append(species)
supported_databases = supported_databases2
for species in supported_databases:
if force == 'yes':
downloadKEGGPathways(species)
for mod in mod_types:
extractKEGGAssociations(species,mod,system_codes)
def importPathwayCommons(selected_species,force):
original_species = selected_species
selected_species = considerOnlyMammalian(selected_species)
if len(selected_species) == 0:
print 'PLEASE NOTE: %s does not support PathwayCommons update.' % string.join(original_species,',')
else:
if force == 'yes':
downloadPathwayCommons()
getSourceData()
for species in selected_species:
for mod in mod_types:
extractGMTAssociations(species,mod,system_codes,'PathwayCommons')
def importTranscriptionTargetAssociations(selected_species,force):
original_species = selected_species
selected_species = considerOnlyMammalian(selected_species)
if len(selected_species) == 0:
print 'PLEASE NOTE: %s does not support Transcription Factor association update.' % string.join(original_species,',')
else:
### No need to specify a species since the database will be added only to currently installed species
if force == 'yes':
source = downloadPAZARAssocations()
if source == 'raw':
x = importPAZARAssociations() ### builds the PAZAR TF-symbol associations from resource.csv files
else:
x = importPAZARcompiled() ### imports from pre-compiled/downloaded TF-symbol associations
y = importAmandeusPredictions(force)
z = dict(x.items() + y.items())
exportSymbolRelationships(z,selected_species,'TFTargets','mapp')
def importPhenotypeOntologyData(selected_species,force):
original_species = selected_species
selected_species = considerOnlyMammalian(selected_species)
if len(selected_species) == 0:
print 'PLEASE NOTE: %s does not support Phenotype Ontology update.' % string.join(original_species,',')
else:
### No need to specify a species since the database will be added only to currently installed species
if force == 'yes':
downloadPhenotypeOntologyOBO()
downloadPhenotypeOntologyGeneAssociations()
x = importPhenotypeOntologyGeneAssociations()
exportSymbolRelationships(x,selected_species,'MPhenoOntology','go')
def importDiseaseOntologyAssociations(selected_species,force):
original_species = selected_species
selected_species = considerOnlyMammalian(selected_species)
if len(selected_species) == 0:
print 'PLEASE NOTE: %s does not support Disease Ontology update.' % string.join(original_species,',')
else:
if force == 'yes':
downloadDiseaseOntologyOBO()
downloadDiseaseOntologyGeneAssociations(selected_species)
x = importDiseaseOntologyGeneAssocations()
exportSymbolRelationships(x,selected_species,'CTDOntology','go')
def importGOSlimAssociations(selected_species,force):
if force == 'yes':
downloadGOSlimOBO()
transferGOSlimGeneAssociations(selected_species)
def importMiRAssociations(selected_species,force):
supported_databases = unique.read_directory('/'+database_dir)
if selected_species != None: ### Restrict by selected species
supported_databases=selected_species
missing_miR_associations=[]
found_miR_associations=[]
for species in supported_databases:
if force == 'yes':
try:
fn = downloadMiRDatabases(species)
found_miR_associations.append((species,fn))
except Exception:
missing_miR_associations.append(species)
for (species,fn) in found_miR_associations:
importMiRGeneAssociations(species,fn)
def importBioMarkerAssociations(selected_species,force):
original_species = selected_species
selected_species = considerOnlyMammalian(selected_species)
if len(selected_species) == 0:
print 'PLEASE NOTE: %s does not support BioMarker association update.' % string.join(original_species,',')
else:
if force == 'yes':
downloadBioMarkers()
x = importBioMarkerGeneAssociations()
exportSymbolRelationships(x,selected_species,'BioMarkers','mapp')
def importDomainAssociations(selected_species,force):
if force == 'yes':
paths = downloadDomainAssociations(selected_species)
for (species,path) in paths:
path = string.replace(path,'.gz','.txt')
importDomainGeneAssociations(species, path)
def considerOnlyMammalian(selected_species):
supported_mammals = ['Am','Bt', 'Cf', 'Ch', 'Cj', 'Cp', 'Do', 'Ec', 'Ee', 'Et', 'Fc', 'Gg', 'Go', 'Hs',
'La', 'Ma', 'Md', 'Me', 'Mi', 'Ml', 'Mm', 'Oa', 'Oc','Og', 'Op', 'Pc', 'Pp',
'Pt', 'Pv', 'Rn', 'Sa', 'Ss', 'St', 'Tb', 'Tn', 'Tr', 'Ts', 'Tt', 'Vp']
filtered_species=[]
if selected_species == None:
selected_species = unique.read_directory('/'+database_dir)
for i in selected_species:
if i in supported_mammals:
filtered_species.append(i)
return filtered_species
def buildInferrenceTables(selected_species):
for species_code in selected_species:
file_found = verifyFile(database_dir+'/'+species_code+'/uid-gene/Ensembl-Symbol'+'.txt') ### If file is present, the below is not needed
if file_found == 'no':
try: gene_associations.swapAndExportSystems(species_code,'Ensembl','EntrezGene') ### Allows for analysis of Ensembl IDs with EntrezGene based GO annotations (which can vary from Ensembl)
except Exception: null=[] ### Occurs if EntrezGene not supported
### Build out these symbol association files
try: gene_associations.importGeneData(species_code,('export','Ensembl'))
except Exception: null=[] ### Occurs if EntrezGene not supported
try: gene_associations.importGeneData(species_code,('export','EntrezGene'))
except Exception: null=[] ### Occurs if EntrezGene not supported
def buildAccessoryPathwayDatabases(selected_species,additional_resources,force):
global database_dir
global program_type
program_type,database_dir = unique.whatProgramIsThis()
buildInferrenceTables(selected_species) ### Make sure these tables are present first!!!
#print 'Attempting to update:', string.join(additional_resources,',')
if 'KEGG' in additional_resources:
try: importKEGGAssociations(selected_species,force)
except Exception: print 'KEGG import failed (cause unknown)'
if 'Transcription Factor Targets' in additional_resources:
try: importTranscriptionTargetAssociations(selected_species,force)
except Exception: print 'Transcription Factor Targets import failed (cause unknown)'
if 'Phenotype Ontology' in additional_resources:
try: importPhenotypeOntologyData(selected_species,force)
except Exception: print 'Phenotype Ontology import failed (cause unknown)'
if 'Disease Ontology' in additional_resources:
try: importDiseaseOntologyAssociations(selected_species,force)
except Exception: print 'Disease Ontology import failed (cause unknown)'
if 'GOSlim' in additional_resources:
try: importGOSlimAssociations(selected_species,force)
except Exception: print 'GOSlim import failed (cause unknown)'
if 'miRNA Targets' in additional_resources:
try: importMiRAssociations(selected_species,force)
except Exception: print 'miRNA Targets import failed (cause unknown)'
if 'BioMarkers' in additional_resources:
try: importBioMarkerAssociations(selected_species,force)
except Exception: print 'BioMarkers import failed (cause unknown)'#,traceback.format_exc()
if 'Domains' in additional_resources:
try: importDomainAssociations(selected_species,force)
except Exception: print 'Domains import failed (cause unknown)'
if 'PathwayCommons' in additional_resources:
try: importPathwayCommons(selected_species,force)
except Exception: print 'PathwayCommons import failed (cause unknown)'
if 'Latest WikiPathways' in additional_resources:
try: importWikiPathways(selected_species,force)
except Exception: print 'WikiPathways import failed (cause unknown)'
if __name__ == '__main__':
selected_species = ['Mm']
force = 'no'
additional_resources=['Latest WikiPathways','PathwayCommons','Transcription Factor Targets','Domains','BioMarkers']
additional_resources+=['miRNA Targets','GOSlim','Disease Ontology','Phenotype Ontology','KEGG']
additional_resources=['Latest WikiPathways']
buildAccessoryPathwayDatabases(selected_species,additional_resources,force)