forked from IDEA-Research/Grounded-Segment-Anything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlama_inpaint_demo.py
25 lines (19 loc) · 896 Bytes
/
lama_inpaint_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import cv2
import PIL
import requests
import numpy as np
from lama_cleaner.model.lama import LaMa
from lama_cleaner.schema import Config
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
img_url = "https://raw.githubusercontent.com/Sanster/lama-cleaner/main/assets/dog.jpg"
mask_url = "https://user-images.githubusercontent.com/3998421/202105351-9fcc4bf8-129d-461a-8524-92e4caad431f.png"
image = np.asarray(download_image(img_url))
mask = np.asarray(download_image(mask_url).convert("L"))
# set to GPU for faster inference
model = LaMa("cpu")
result = model(image, mask, Config(hd_strategy="Original", ldm_steps=20, hd_strategy_crop_margin=128, hd_strategy_crop_trigger_size=800, hd_strategy_resize_limit=800))
cv2.imwrite("lama_inpaint_demo.jpg", result)