forked from IDEA-Research/Grounded-Segment-Anything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_referring_seg_demo.py
110 lines (82 loc) · 3.01 KB
/
image_referring_seg_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import data
import cv2
import torch
from PIL import Image, ImageDraw
from tqdm import tqdm
from models import imagebind_model
from models.imagebind_model import ModalityType
from segment_anything import build_sam, SamAutomaticMaskGenerator
from utils import (
segment_image,
convert_box_xywh_to_xyxy,
get_indices_of_values_above_threshold,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
"""
Step 1: Instantiate model
"""
# Segment Anything
mask_generator = SamAutomaticMaskGenerator(
build_sam(checkpoint=".checkpoints/sam_vit_h_4b8939.pth").to(device),
points_per_side=16,
)
# ImageBind
bind_model = imagebind_model.imagebind_huge(pretrained=True)
bind_model.eval()
bind_model.to(device)
"""
Step 2: Generate auto masks with SAM
"""
image_path = ".assets/car_image.jpg"
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masks = mask_generator.generate(image)
"""
Step 3: Get cropped images based on mask and box
"""
cropped_boxes = []
image = Image.open(image_path)
for mask in tqdm(masks):
cropped_boxes.append(segment_image(image, mask["segmentation"]).crop(convert_box_xywh_to_xyxy(mask["bbox"])))
"""
Step 4: Run ImageBind model to get similarity between cropped image and different modalities
"""
# load referring image
referring_image_path = ".assets/referring_car_image.jpg"
referring_image = Image.open(referring_image_path)
image_list = []
image_list += cropped_boxes
image_list.append(referring_image)
def retriev_vision_and_vision(elements):
inputs = {
ModalityType.VISION: data.load_and_transform_vision_data_from_pil_image(elements, device),
}
with torch.no_grad():
embeddings = bind_model(inputs)
# cropped box region embeddings
cropped_box_embeddings = embeddings[ModalityType.VISION][:-1, :]
referring_image_embeddings = embeddings[ModalityType.VISION][-1, :]
vision_referring_result = torch.softmax(cropped_box_embeddings @ referring_image_embeddings.T, dim=0),
return vision_referring_result # [113, 1]
vision_referring_result = retriev_vision_and_vision(image_list)
"""
Step 5: Merge the top similarity masks to get the final mask and save the merged mask
Image / Text mask
"""
# get highest similar mask with threshold
# result[0] shape: [113, 1]
threshold = 0.017
index = get_indices_of_values_above_threshold(vision_referring_result[0], threshold)
segmentation_masks = []
for seg_idx in index:
segmentation_mask_image = Image.fromarray(masks[seg_idx]["segmentation"].astype('uint8') * 255)
segmentation_masks.append(segmentation_mask_image)
original_image = Image.open(image_path)
overlay_image = Image.new('RGBA', image.size, (0, 0, 0, 255))
overlay_color = (255, 255, 255, 0)
draw = ImageDraw.Draw(overlay_image)
for segmentation_mask_image in segmentation_masks:
draw.bitmap((0, 0), segmentation_mask_image, fill=overlay_color)
# return Image.alpha_composite(original_image.convert('RGBA'), overlay_image)
mask_image = overlay_image.convert("RGB")
mask_image.save("./image_referring_sam_merged_mask.jpg")