Skip to content

Latest commit

 

History

History
175 lines (88 loc) · 10.9 KB

CITATIONS.md

File metadata and controls

175 lines (88 loc) · 10.9 KB

nf-core/mag: Citations

Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031.

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311.

Pipeline tools

  • AdapterRemoval2

    Schubert, M., Lindgreen, S., and Orlando, L. 2016. "AdapterRemoval v2: Rapid Adapter Trimming, Identification, and Read Merging." BMC Research Notes 9 (February): 88. doi: 10.1186/s13104-016-1900-2

  • BBnorm/BBTools

  • BCFtools

    Danecek, Petr, et al. "Twelve years of SAMtools and BCFtools." Gigascience 10.2 (2021): giab008. doi: 10.1093/gigascience/giab008

  • Bowtie2

    Langmead, B. and Salzberg, S. L. 2012 Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), p. 357–359. doi: 10.1038/nmeth.1923.

  • Busco

    Seppey, M., Manni, M., & Zdobnov, E. M. (2019). BUSCO: assessing genome assembly and annotation completeness. In Gene prediction (pp. 227-245). Humana, New York, NY. doi: 10.1007/978-1-4939-9173-0_14.

  • CAT

    von Meijenfeldt, F. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H., & Dutilh, B. E. (2019). Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome biology, 20(1), 1-14. doi: 10.1186/s13059-019-1817-x.

  • Centrifuge

    Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome research, 26(12), 1721-1729. doi: 10.1101/gr.210641.116.

  • CheckM

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043–1055. doi: 10.1101/gr.186072.114

  • CONCOCT

    Alneberg, J., Bjarnason, B. S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J., Andersson, A. F., & Quince, C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods, 11(11), 1144–1146. doi: 10.1038/nmeth.3103

  • DAS Tool

    Sieber, C. M. K., et al. 2018. "Recovery of Genomes from Metagenomes via a Dereplication, Aggregation and Scoring Strategy." Nature Microbiology 3 (7): 836-43. doi: 10.1038/s41564-018-0171-1

  • FastP

    Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics , 34(17), i884–i890. doi: 10.1093/bioinformatics/bty560.

  • FastQC

    Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online].

  • Filtlong

  • Freebayes

    Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907 [q-bio.GN] 2012

  • geNomad

    Camargo, A. P., et al. (2023). You can move, but you can’t hide: identification of mobile genetic elements with geNomad. bioRxiv preprint. doi: 10.1101/2023.03.05.531206

  • GTDB-Tk

    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics , 36(6), 1925–1927. doi: 10.1093/bioinformatics/btz848.

  • GUNC

    Orakov, A., Fullam, A., Coelho, A. P., Khedkar, S., Szklarczyk, D., Mende, D. R., Schmidt, T. S. B., and Bork, P.. 2021. “GUNC: Detection of Chimerism and Contamination in Prokaryotic Genomes.” Genome Biology 22 (1): 178. doi: 10.1186/s13059-021-02393-0.

  • Kraken2

    Wood, D et al., 2019. Improved metagenomic analysis with Kraken 2. Genome Biology volume 20, Article number: 257. doi: 10.1186/s13059-019-1891-0.

  • Krona

    Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a Web browser. BMC bioinformatics, 12(1), 1-10. doi: 10.1186/1471-2105-12-385.

  • MaxBin2

    Yu-Wei, W., Simmons, B. A. & Singer, S. W. (2015) MaxBin 2.0: An Automated Binning Algorithm to Recover Genomes from Multiple Metagenomic Datasets. Bioinformatics 32 (4): 605–7. doi: 10.1093/bioinformatics/btv638.

  • MEGAHIT

    Li, D., Luo, R., Liu, C. M., Leung, C. M., Ting, H. F., Sadakane, K., ... & Lam, T. W. (2016). MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods, 102, 3-11. doi: 10.1016/j.ymeth.2016.02.020.

  • MetaBAT2

    Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., & Wang, Z. (2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 7, e7359. doi: 10.7717/peerj.7359.

  • MetaEuk

    Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48 (2020). 10.1186/s40168-020-00808-x

  • MMseqs2

    Steinegger, M., Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35, 1026–1028 (2017).10.1038/nbt.3988

  • MultiQC

    Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924.

  • NanoLyse

    De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666-2669. doi: 10.1093/bioinformatics/bty149.

  • NanoPlot

    De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666-2669. doi: 10.1093/bioinformatics/bty149.

  • Porechop

  • Porechop-abi

    Bonenfant, Q., Noé, L., & Touzet, H. (2022). Porechop_ABI: discovering unknown adapters in ONT sequencing reads for downstream trimming. bioRxiv. 10.1101/2022.07.07.499093

  • Prodigal

    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010 Mar 8;11:119. doi: 10.1186/1471-2105-11-119. PMID: 20211023; PMCID: PMC2848648.

  • Prokka

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul 15;30(14):2068-9. doi: 10.1093/bioinformatics/btu153. Epub 2014 Mar 18. PMID: 24642063.

  • PyDamage

    Borry M, Hübner A, Rohrlach AB, Warinner C. 2021. PyDamage: automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ 9:e11845 doi: 10.7717/peerj.11845

  • SAMtools

    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics , 25(16), 2078–2079. doi: 10.1093/bioinformatics/btp352.

  • Seqtk

  • SPAdes

    Nurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes: a new versatile metagenomic assembler. Genome research, 27(5), 824-834. doi: 10.1101/gr.213959.116.

  • Tiara

    Karlicki, M., Antonowicz, S., Karnkowska, A., 2022. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics 38, 344–350. doi: 10.1093/bioinformatics/btab672

Data

  • Full-size test data

    Bertrand, D., Shaw, J., Kalathiyappan, M., Ng, A. H. Q., Kumar, M. S., Li, C., ... & Nagarajan, N. (2019). Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nature biotechnology, 37(8), 937-944. doi: 10.1038/s41587-019-0191-2.

Software packaging/containerisation tools

  • Anaconda

    Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web.

  • Bioconda

    Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506.

  • BioContainers

    da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671.

  • Docker

    Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241.

  • Singularity

    Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.