-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCalculus Textbook.tex
executable file
·6452 lines (4590 loc) · 199 KB
/
Calculus Textbook.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt,a4paper]{book}
\usepackage{lib/Textbook}
\exhyphenpenalty=10000\hyphenpenalty=10000
%\sloppy
\usepackage{enumitem}
\usepackage{mdframed}
\usepackage{tikz}
\usepackage{nccmath}
\usepackage{wrapfig}
\usepackage{textcomp}
\usepackage{multirow}
\usepackage{tasks}
\usetikzlibrary{shapes,arrows,decorations.pathreplacing,calc,
positioning,intersections,shadows}
\usepackage[export]{adjustbox}
\usepackage{chngcntr}
\usepackage{array}
\usepackage{picture}
\tikzstyle{Box} = [rectangle, minimum height=1cm, draw=black]
\tikzstyle{arrow} = [thick, ->, >=stealth]
\newlist{steps}{enumerate}{1}
\setlist[steps, 1]{label = Step \arabic*:}
\let\csc\relax
\DeclareMathOperator{\csc}{cosec}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\W}{\mathbb{W}}
\newcommand{\C}{\mathbb{C}}
\usepackage{ulem}
\usepackage{graphicx}
\usepackage[english]{babel}
\usepackage{lipsum}
\usepackage{xcolor}
\usepackage{tikz}
\usepackage{mathtools,amsfonts,amssymb,amsthm}
\usepackage[most]{tcolorbox}
\setlength{\parindent}{0pt}
\usepackage{fourier}
\usepackage{comment}
\usepackage[clockwise, figuresright]{rotating}
\let\cleardoublepage=\clearpage
% Start document
\begin{document}
\tableofcontents
\newpage
\thispagestyle{plain}
\begin{sidewaysfigure}
\begin{minipage}[t]{0.3\textwidth}
\begin{center}
\textbf{\Large{}Derivatives}{\Large\par}
\par\end{center}
\textbf{\large{}\uline{Exponential/Logarithmic Functions}}{\large\par}
\setlength{\extrarowheight}{0.35cm}
\begin{tabular}{>{\raggedright}p{3.5cm}>{\raggedright}p{6cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{x}\right)=\mathrm{e}^{x}}$\tabularnewline
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\ln x\right)=\frac{1}{x},x>0}$
\tabularnewline
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}(}a^{x})=a^{x}\ln a$ & \tabularnewline
\end{tabular}
\vspace{0.5cm}
\textbf{\large{}\uline{Trigonometric Functions}}{\large\par}
\begin{tabular}{>{\raggedright}p{6cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\sin x\right)=\cos x}$\tabularnewline
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\cos x\right)=-\sin x}$\tabularnewline
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\tan\thinspace x\right)=\sec^{2}x}$\tabularnewline
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\sec x\right)=\sec x\tan x}$\tabularnewline
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\csc x\right)=-\csc x\cot x}$\tabularnewline
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\cot\thinspace x\right)=-\csc^{2}x}$\tabularnewline
\end{tabular}
\vspace{0.5cm}
\textbf{\large{}\uline{Inverse Trig Functions}}{\large\par}
\begin{tabular}{>{\raggedright}p{6cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\sin^{-1}x\right)=\frac{1}{\sqrt{1-x^{2}}}}$\tabularnewline
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\cos^{-1}x\right)=-\frac{1}{\sqrt{1-x^{2}}}}$\tabularnewline
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\tan^{-1}x\right)=\frac{1}{x^{2}+1}}$\tabularnewline
\end{tabular}
\vspace{.5cm}
\textbf{\large{}\uline{Parametric Equations}}{\large\par}
\vspace{.5cm}
\hspace{.5cm}${\displaystyle \frac{\mathrm{d}y}{\mathrm{d}t}=\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)}$
\end{minipage}
\begin{minipage}[t]{0.23\textwidth}
\begin{center}
\textbf{\Large{}Integrals}{\Large\par}
\par\end{center}
\textbf{\large{}\uline{Powers of }}\textbf{\textit{\large{}\uline{x}}}{\large\par}
\setlength{\extrarowheight}{0.35cm}
\begin{tabular}{>{\raggedright}p{6cm}}
${\displaystyle \int x^{n}\thinspace dx=\frac{x^{n+1}}{n+1}+C,\, n\ne-1}$\tabularnewline
${\displaystyle \int\frac{1}{x}\thinspace dx=\ln\left|x\right|+C,\, x\ne0}$\tabularnewline
\end{tabular}
\vspace{0.5cm}
\textbf{\large{}\uline{Exponential Functions}}{\large\par}
\begin{tabular}{>{\raggedright}p{6cm}}
${\displaystyle \int \mathrm{e}^{x}\thinspace dx=\mathrm{e}^{x}+C}$\tabularnewline
${\displaystyle \int \mathrm{e}^{(ax+b)}\thinspace dx=\frac{1}{a}\mathrm{e}^{ax+b}+C,\, a\ne0}$\tabularnewline
\end{tabular}
\vspace{0.5cm}
\textbf{\large{}\uline{Trigonometric Functions}}{\large\par}
\begin{tabular}{>{\raggedright}p{6cm}}
${\displaystyle \int\cos x\thinspace dx=\sin x+C}$\tabularnewline
${\displaystyle \int\sin x\thinspace dx=-\cos x+C}$\tabularnewline
${\displaystyle \int\sec^{2}x\thinspace dx=\tan x+C}$\tabularnewline
${\displaystyle \int\csc^{2}x\thinspace dx=-\cot x+C}$\tabularnewline
${\displaystyle \int\sec x\tan x\thinspace dx=\sec x+C}$\tabularnewline
${\displaystyle \int\csc x\cot x\thinspace dx=-\csc x+C}$\tabularnewline
\end{tabular}
\vspace{0.5cm}
\textbf{\large{}\uline{Inverse Trig Functions}}{\large\par}
\begin{tabular}{>{\raggedright}p{6cm}}
${\displaystyle \int\frac{1}{\sqrt{1-x^{2}}}dx=\sin^{-1}x}+C$\tabularnewline
${\displaystyle \int\frac{1}{\sqrt{a^{2}-x^{2}}}dx=\sin^{-1}\left(\frac{x}{a}\right)}+C$\tabularnewline
${\displaystyle \int\frac{1}{x^{2}+1}dx=\tan^{-1}x}+C$\tabularnewline
${\displaystyle \int\frac{1}{a^{2}+x^{2}}dx=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)}+C$\tabularnewline
\end{tabular}
\end{minipage}
\begin{minipage}[t]{0.4\textwidth}
\begin{center}
\textbf{\Large{}Maclaurin Series}{\Large\par}
\par\end{center}
\textbf{\large{}\uline{Maclaurin's Series Expansion of $f\left(x\right)$
}}{\large\par}
${\displaystyle f\left(x\right)=\sum\limits _{n=0}^{\infty}f^{\left(n\right)}\left(0\right)\frac{x^{n}}{n!}=f\left(0\right)+f\text{\textquoteright}\left(0\right)x+\frac{f^{\prime\prime}\left(0\right)}{2!}x^{2}+\ldots+\frac{f^{\left(n\right)}\left(0\right)}{n!}x^{n}+\ldots}$
Where $f^{\left(n\right)}\left(0\right)$ is the $n$th derivative
of $f\left(x\right)$ at $x=0$.
\vspace{0.5cm}
\textbf{\large{}\uline{Standard Maclaurin Expansions
}}{\large\par}
\setlength{\extrarowheight}{0.33cm}
\begin{tabular}[b]{>{\raggedright}m{12cm}}
${\displaystyle \left(1+x\right)^{n}=1+nx+\frac{n\left(n-1\right)}{2!}x^{2}+\ldots+\frac{n\left(n-1\right)\ldots\left(n-r+1\right)}{{r!}}}x^{r}+\ldots$
\tabularnewline
${\displaystyle \mathrm{e}^{x}=1+x+\frac{{x^{2}}}{{2!}}+\frac{{x^{3}}}{{3!}}+\ldots+\frac{{x^{r}}}{{r!}}+\ldots}$\tabularnewline
${\displaystyle \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots\frac{\left(\text{\textendash}1\right)^{r}x^{2r+1}}{\left(2r+1\right)!}+\ldots}$\tabularnewline
${\displaystyle \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots\frac{\left(\text{\textendash}1\right)^{r}x^{2r}}{\left(2r\right)!}+\ldots}$\tabularnewline
${\displaystyle \ln\left(1+x\right)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots\frac{\left(\text{\textendash}1\right)^{r+1}x^{r}}{r}+\ldots}$\tabularnewline
${\displaystyle \ln\left(1-x\right)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots-\frac{x^{r}}{r}}-\ldots$\tabularnewline
\end{tabular}
\vspace{0.5cm}
\textbf{\large{}\uline{Small Angle Approximation
}}{\large\par}
\begin{tabular}[b]{>{\raggedright}m{4cm}}
$\sin\theta\approx\theta$
\tabularnewline
${\displaystyle \cos\theta\approx1-\frac{\theta^{2}}{2}}$
\tabularnewline
$\tan\theta\approx\theta$
\tabularnewline
\end{tabular}Where $\theta$ is small and in radians.
\begin{center}
\textbf{\Large{}Differential Equations}{\Large\par}
\par\end{center}
\textbf{\large{}\uline{Separation of Variables
}}{\large\par}
\begin{enumerate}
\item Rearrange the differential equation ${\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x}=g\left(y\right)f\left(x\right)}$
into the form ${\displaystyle \frac{1}{g\left(y\right)}\frac{\mathrm{d}y}{\mathrm{d}x}=f\left(x\right)}$.
\item Integrate both sides with respect to $x$, i.e. ${\displaystyle \int}{\displaystyle \frac{1}{g\left(y\right)}\mathrm{d}y=\int f\left(x\right)\mathrm{d}x}$.
\end{enumerate}
\end{minipage}
\end{sidewaysfigure}
\newpage
\setcounter{chapter}{5}
\chapter{Limits}
\section{Limits}
It is difficult to understand calculus without a firm grasp on the
meaning of a limit. A derivative, the fundamental concept of differential
calculus, is a limit. An integral, the fundamental concept of integral
calculus, is a limit.
The following definition of a limit is informal, but adequate for
our purposes.
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
We say ${\displaystyle \lim_{x\rightarrow a}f\left(x\right)=L}$ if
we can make $f\left(x\right)$ as close to $L$ as we want by taking
$x$ sufficiently close to $a$ (on either side of $a$) without letting
$x=a$.
\end{tcolorbox}
Notice that the limit is defined for $x$ close to but not equal to
$a$. This means that whether the function $f$ is defined or not
at $x=a$ is not important to the definition of the limit of $f$
as $x$ approaches $a$. What \textit{is} important is the behaviour
of the function as $x$ gets very close to $a$.
For example, suppose we wish to find the limit of ${\displaystyle f\left(x\right)=\frac{5x+x^{2}}{x}}$
as $x\rightarrow0$.
It is tempting for us to substitute $x=0$ into $f\left(x\right)$.
However, in doing this, not only do we get the meaningless value $\frac{0}{0}$, but we also ignore the basic limit definition.
\begin{minipage}{.5\textwidth}
\begin{align*}
{\displaystyle \text{Instead, observe that if }} & f\left(x\right)=\frac{5x+x^{2}}{x}=\frac{x\left(5+x\right)}{x}\\
\text{then } & f\left(x\right)=\begin{cases}
5+x & x\neq0\\
\text{undefined} & x=0
\end{cases}
\end{align*}
\end{minipage}
\begin{minipage}{.5\textwidth}
\begin{center}
\includegraphics[width=5.5cm,valign=t]{\string"lib/Graphics/LimitsIntro\string".png}
\par\end{center}
\end{minipage}
The graph of $y=f\left(x\right)$ is therefore a straight line $y=x+5$
with a ``hole'' at $\left(0,5\right)$. The ``hole'' is a \textbf{point
of discontinuity} of the function.
However, even though this point is missing, the limit of $f\left(x\right)$
as $x$ approaches $0$ does exist. In particular, as $x\to0$ from
either direction, $f\left(x\right)\rightarrow5$.
We write ${\displaystyle \lim_{x\to0}\frac{5x+x^{2}}{x}=5}$ which
reads: ``the limit as $x$ approaches 0, of ${\displaystyle \frac{5x+x^{2}}{x}}$, is 5''.
Below, we have some properties of limits.
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
Assuming ${\displaystyle \lim_{x\rightarrow a}f\left(x\right)}$ and
${\displaystyle \lim_{x\rightarrow a}g\left(x\right)}$ both exist
and $c$ is any real number, then
\begin{tasks}[style=itemize,label-width=3.5ex](2)
\task $\mathop{\lim}\limits _{x\to a}\left[{cf\left(x\right)}\right]=c\mathop{\lim}\limits _{x\to a}f\left(x\right)$
\task $\mathop{\lim}\limits _{x\to a}\left[{f\left(x\right)\pm g\left(x\right)}\right]=\mathop{\lim}\limits _{x\to a}f\left(x\right)\pm\mathop{\lim}\limits _{x\to a}g\left(x\right)$
\task $\mathop{\lim}\limits _{x\to a}\left[{f\left(x\right)g\left(x\right)}\right]=\mathop{\lim}\limits _{x\to a}f\left(x\right)\times\mathop{\lim}\limits _{x\to a}g\left(x\right)$
\task ${\displaystyle \mathop{\lim}\limits _{x\to a}\left[{\frac{{f\left(x\right)}}{{g\left(x\right)}}}\right]=\frac{{\mathop{\lim}\limits _{x\to a}f\left(x\right)}}{{\mathop{\lim}\limits _{x\to a}g\left(x\right)}}{\rm {,}}\,\,\,\,\,{\rm {provided}}\,\mathop{\lim}\limits _{x\to a}g\left(x\right)\ne0}$
\task $\mathop{\lim}\limits _{x\to a}c=c,\,\,\,\,c{\mbox{ is any real number}}$
\task $\mathop{\lim}\limits _{x\to a}x=a$
\end{tasks}
\end{tcolorbox}
\begin{example}
Evaluate:
\begin{tasks}[label=(\alph*),label-width=3.5ex] (3)
\task $\mathop{\lim}\limits _{x\to2}x^{2}$
\task ${\displaystyle \mathop{\lim}\limits _{x\to0}\frac{x^{2}+3x}{x}}$
\task ${\displaystyle \mathop{\lim}\limits _{x\to3}\frac{x^{2}-9}{x-3}}$
\end{tasks}
\Solution
\begin{tasks}[label=(\alph*),label-width=3.5ex] (3)
\task
$
\begin{aligned}[t]
\mathop{\lim}\limits _{x\to2}x^{2} & =\left(2\right)^{2}\\
& =4
\end{aligned}
$
\task
$
\begin{aligned}[t]
{\displaystyle \mathop{\lim}\limits _{x\to0}\frac{x^{2}+3x}{x}} & =\lim_{x\to0}\left(x+3\right)\\
& =3
\end{aligned}
$
\task
$
\begin{aligned}[t]
{\displaystyle \mathop{\lim}\limits _{x\to3}\frac{x^{2}-9}{x-3}} & =\mathop{\lim}\limits _{x\to3}\frac{\left(x+3\right)\left(x-3\right)}{x-3}\\
& =\mathop{\lim}\limits _{x\to3}x+3\\
& =6
\end{aligned}
$
\end{tasks}
\end{example}
\section{Existence of Limits}
A one-sided limit is the value the function approaches as the $x-$values approach the limit from one side only.
Right Hand Limit:
\[
{\displaystyle \lim_{x\rightarrow a^{+}}f\left(x\right)={\displaystyle L}}
\]
Left Hand Limit:
\[
{\displaystyle \lim_{x\rightarrow a^{-}}f\left(x\right)={\displaystyle L}}
\]
\centerline{\begin{minipage}{.85\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
The limit ${\displaystyle \lim_{x\rightarrow a}f\left(x\right)}$
exists and is equal to the finite value $L$ if ${\displaystyle \lim_{x\rightarrow a^{+}}f\left(x\right)={\displaystyle \lim_{x\rightarrow a^{-}}f\left(x\right)=L}}$.
\end{tcolorbox}
\end{minipage}}
In words, the limit exists if and only if both the right hand and left hand limit exist and are equal.
\begin{itemize}
\item \begin{minipage}[t]{.5\textwidth}
Consider $f\left(x\right)=\begin{cases}
4, & x<1\\
2, & x\geq1
\end{cases}$
\bigskip
Observe that there is a ``jump'' at $x=1$.
\bigskip
${\displaystyle \lim_{x\rightarrow1^{-}}f\left(x\right)={\displaystyle 4}}$
and ${\displaystyle \lim_{x\rightarrow1^{+}}f\left(x\right)={\displaystyle 2}}$
\bigskip
Since the left and right hand limits are not equal,
\bigskip
${\displaystyle \therefore\lim_{x\rightarrow1}f\left(x\right)}$
\textbf{does not exist}.
\end{minipage}
\begin{minipage}[t]{.5\textwidth}
\begin{center}
\includegraphics[width=6cm,valign=t]{\string"lib/Graphics/LimitsJump\string".png}
\par\end{center}
\end{minipage}
\item \begin{minipage}[t]{.5\textwidth}
Consider ${\displaystyle f\left(x\right)=\frac{1}{x^{2}}}$
\bigskip
Observe that there is a ``break'' at $x=0$.
\bigskip
As $x\rightarrow0$, $f\left(x\right)\to\infty$.
\bigskip
Neither ${\displaystyle \lim_{x\rightarrow0^{-}}f\left(x\right)}$
nor ${\displaystyle \lim_{x\rightarrow0^{+}}f\left(x\right)}$ exists,
\bigskip
${\displaystyle \therefore\lim_{x\rightarrow0}f\left(x\right)}$
\textbf{does not exist}.
\end{minipage}
\begin{minipage}[t]{.5\textwidth}
\begin{center}
\includegraphics[width=6cm,valign=t]{\string"lib/Graphics/LimitsBreak\string".png}
\par\end{center}
\end{minipage}
\end{itemize}
\newpage
\section{Limits at Infinity}
We can use the idea of limits to discuss the behaviour of functions
for extreme values of $x$.
We write $x\to\infty$ to mean ``$x$ tends to positive infinity''
and $x\to-\infty$ to mean ``$x$ tends to negative infinity''.
\begin{example}
Evaluate:
\begin{tasks}[label=(\alph*),label-width=3.5ex] (3)
\task ${\displaystyle \mathop{\lim}\limits _{x\to\infty}\frac{2x+3}{x-4}}$
\task ${\displaystyle \mathop{\lim}\limits _{x\to\infty}\frac{x^{2}-3x+2}{1-x^{2}}}$
\task ${\displaystyle \mathop{\lim}\limits _{x\to\infty}\frac{x^{2}+x+1}{x-2}}$
\end{tasks}
\Solution
\begin{tasks}[label=(\alph*),label-width=3.5ex]
\task
$
\begin{aligned}[t]
\mathop{\lim}\limits _{x\to\infty}\frac{2x+3}{x-4} & ={\displaystyle \mathop{\lim}\limits _{x\to\infty}\frac{2+\frac{3}{x}}{1-\frac{4}{x}}\text{ (dividing each term by \ensuremath{x} since \ensuremath{x\neq0})}}\\
& =\frac{2}{1}\\
& =2
\end{aligned}
$
\task
$
\begin{aligned}[t]
\mathop{\lim}\limits _{x\to\infty}\frac{x^{2}-3x+2}{1-x^{2}} & =\mathop{\lim}\limits _{x\to\infty}\frac{1-\frac{3}{x}+\frac{2}{x^{2}}}{\frac{1}{x^{2}}-1}\text{ (dividing each term by \ensuremath{x^{2}} since \ensuremath{x\neq0})}\\
& =\frac{1}{-1}\\
& =-1
\end{aligned}
$
\task
$
\begin{aligned}[t]
\mathop{\lim}\limits _{x\to\infty}\frac{x^{2}+x+1}{x-2}=\mathop{\lim}\limits _{x\to\infty}\frac{1+\frac{1}{x}+\frac{1}{x^{2}}}{\frac{1}{x}-\frac{2}{x^{2}}}\text{ (dividing each term by \ensuremath{x^{2}} since \ensuremath{x\neq0})}
\end{aligned}
$
As $x\to\infty$, the numerator $\to\:1$, but the denominator $\to\:0$.
Hence as $x\to\infty$, ${\displaystyle \frac{x^{2}+x+1}{x-2}\to\infty}$.
${\displaystyle \therefore\mathop{\lim}\limits _{x\to\infty}\frac{x^{2}+x+1}{x-2}}$
does not exist.
\end{tasks}
\end{example}
\newpage
\section{Continuity}
The existence of $f\left(a\right)$ and ${\displaystyle \lim_{x\to a}f\left(x\right)}$
are useful for describing the continuity of a curve.
\medskip
\centerline{\begin{minipage}{.8\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
A function $f$ is continuous at $x=a$ if $f\left(a\right)$ and
${\displaystyle \lim_{x\to a}f\left(x\right)}$ exist and are equal.
\end{tcolorbox}
\end{minipage}}
\begin{minipage}[t]{.5\textwidth}
If $f$ is not continuous at $x=a$, we say that $f$ is discontinuous
at $x=a$ or has a discontinuity at $x=a$.
If $f$ has a ``hole'' at $x=a$, then ${\displaystyle \lim_{x\to a}f\left(x\right)}$
exists, but $f\left(a\right)$ does not. The ``hole'' is a \textbf{removable
discontinuity} which can be removed by defining a new function based
on $f$ but which takes the value ${\displaystyle \lim_{x\to a}f\left(x\right)}$
when $x=a$.
\medskip
Discontinuities due to ``jumps'' and ``breaks'' cannot be removed
by simply redefining the value of the function there. They are called
\textbf{essential discontinuities}.
\end{minipage}
\begin{minipage}[t]{.5\textwidth}
\begin{center}
\includegraphics[width=6cm,valign=t]{\string"lib/Graphics/LimitsContinuity\string".png}
\par\end{center}
\end{minipage}
\begin{example}
\begin{minipage}[t]{.5\textwidth}
The graph of $y=f\left(x\right)$ is shown alongside.
State the value(s) of $x$ for which $f$
\begin{tasks}[label=(\alph*),label-width=3.5ex]
\task has an essential discontinuity,
\task has a removable discontinuity,
\task is continuous.
\end{tasks}
\end{minipage}
\begin{minipage}[t]{.5\textwidth}
\begin{center}
\includegraphics[width=6cm,valign=t]{\string"lib/Graphics/LimitsContinuityEx1\string".png}
\par\end{center}
\end{minipage}
\Solution
\begin{tasks}[label=(\alph*),label-width=3.5ex]
\task At $x=6$, $f$ is not defined and ${\displaystyle \lim_{x\to6}f\left(x\right)}$
does not exist.
Thus $f$ has an essential discontinuity at $x=6$.
\task At $x=5$, $f$ is not defined but ${\displaystyle \lim_{x\to5}f\left(x\right)}$
does exist.
Thus $f$ has a removable discontinuity at $x=5$.
\task $f$ is continuous for all $x\in\R$, $x\neq5$ and $x\neq6$.
\end{tasks}
\end{example}
\chapter{Differentiation Techniques}
\section{Formal Definition of the Derivative}
A derivative describes the instantaneous rate of change of a curve,
or in other words, the slope of a curve at a point. The formal definition
of a derivative is as follows
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
The derivative of $f(x)$ with respect to $x$ is the function $f'(x)$
and is defined as,
\[
f'(x)=\lim_{h\rightarrow0}\frac{f(x+h)-f(x)}{h}
\]
provided the limit exists.
\end{tcolorbox}
The meaning of this is can be best understood by observing the following
diagram.
\begin{minipage}[t]{.5\textwidth}
The chord $AB$ represents the mean rate of change of the function
in the interval between $x$ and $x+h$. If we want the exact rate
of change at $A$, we ``move'' the point $B$ to meet $A$. In doing
so, the distance between the two points, $x$ and $x+h$, becomes
closer to zero, and the slope of the line between them comes closer
to resembling a tangent line.
\end{minipage}
\begin{minipage}[t]{.5\textwidth}
\begin{center}
\includegraphics[width=7cm,valign=t]{\string"lib/Graphics/DerivativeGraph\string".png}
\par\end{center}
\end{minipage}
\subsection{Notation}
Given a function $y=f(x)$ all of the following are equivalent and
represent the derivative of $f(x)$ with respect to $x$.
\[
f'\left(x\right)=y'=\frac{{\mathrm{d}y}}{{\mathrm{d}x}}=\frac{\mathrm{d}}{{\mathrm{d}x}}\left[f\left(x\right)\right]
\]
When evaluating derivatives at a point, say $x=a$, we use either
of the following equivalent notations.
\[
f'\left(a\right)={\left.{\frac{{\mathrm{d}y}}{{\mathrm{d}x}}}\right|_{x=a}}
\]
\subsection{Differentiation From First Principles}
When we use the limit definition to find a derivative, we say we are
\textbf{differentiating from first principles}.
\newpage{}
\begin{example}
Consider the function $f\left(x\right)=x^{2}$.
\begin{tasks}[label=(\alph*),label-width=3.5ex]
\task Use the first principles to find $f'\left(x\right)$.
\task Find $f'\left(-1\right)$ and interpret your answer.
\end{tasks}
\Solution
\begin{tasks}[label=(\alph*),label-width=3.5ex](2)
\task
$
\begin{aligned}[t]
f'\left(x\right) & =\lim_{h\rightarrow0}\frac{f(x+h)-f(x)}{h}\\
& =\lim_{h\rightarrow0}\frac{\left(x+h\right)^{2}-x^{2}}{h}\\
& =\lim_{h\rightarrow0}\frac{x^{2}+2xh+h^{2}-x^{2}}{h}\\
& =\lim_{h\rightarrow0}\frac{2xh+h^{2}}{h}\\
& =\lim_{h\rightarrow0}2x+h\\
& =2x
\end{aligned}
$
\task
$
\begin{aligned}[t]
f'\left(-1\right) & =2\left(-1\right)\\
& =-2
\end{aligned}
$
The tangent to $f\left(x\right)=x^{2}$ at the point where $x=-1$,
has a gradient of $-2$.
\end{tasks}
\end{example}
\subsection{Basic Rules of Differentiation}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
If $f(x)$ and $g(x)$ are differentiable functions and $c$, $n$
are any real numbers,
\begin{tasks}[style=itemize,label-width=3.5ex]
\task %
\begin{tabular}{>{\raggedright}p{7cm}>{\raggedright}p{4cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(k\right)=0}$ & (Constant Rule)\tabularnewline
\end{tabular}
\task %
\begin{tabular}{>{\raggedright}p{7cm}>{\raggedright}p{4cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(x^{n}\right)=nx^{n-1}}$ & (Power Rule)\tabularnewline
\end{tabular}
\task %
\begin{tabular}{>{\raggedright}p{7cm}>{\raggedright}p{4cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[kf(x)\right]=kf'(x)}$ & (Constant Multiple Rule)\tabularnewline
\end{tabular}
\task %
\begin{tabular}{>{\raggedright}p{7cm}>{\raggedright}p{5cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[f(x)\pm g(x)\right]=f'(x)\pm g'(x)}$ & (Sum and Difference Rule)\tabularnewline
\end{tabular}
\task %
\begin{tabular}{>{\raggedright}p{7cm}>{\raggedright}p{4cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[f(g(x))\right]=f'\left[g(x)\right]g'(x)}$ & (Chain Rule)\tabularnewline
\end{tabular}
If $y=f\left(u\right)$ and $u=g\left(x\right)$, then the
chain rule can be written as
\[
\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}u}\times\frac{\mathrm{d}u}{\mathrm{d}x}
\]
\task %
\begin{tabular}{>{\raggedright}p{7cm}>{\raggedright}p{4cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[f\left(x\right)g\left(x\right)\right]=f\left(x\right)g'\left(x\right)+g\left(x\right)f'\left(x\right)}$ & (Product Rule)\tabularnewline
\end{tabular}
\task %
\begin{tabular}{>{\raggedright}p{7cm}>{\raggedright}p{4cm}}
${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{g\left(x\right)f'\left(x\right)-f\left(x\right)g'\left(x\right)}{\left[g\left(x\right)\right]^{2}}}$ & (Quotient Rule)\tabularnewline
\end{tabular}
\end{tasks}
\end{tcolorbox}
\newpage
\begin{example}
Differentiate the following functions with respect to $x$.
\begin{tasks}[label=(\alph*),label-width=3.5ex](2)
\task $\frac{{\displaystyle 2x^{2}+3x-4}}{{\displaystyle \sqrt{x}}}$
\task $\sqrt{x^{2}-x+3}$
\task $\left(2x-3\right)\sqrt{x-5}$
\task ${\displaystyle \frac{x^{2}+1}{1-x}}$
\end{tasks}
\Solution
\begin{tasks}[label=(\alph*),label-width=3.5ex,after-item-skip = 1cm]
\task
$
\begin{aligned}[t]
{\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{{\displaystyle 2x^{2}+3x-4}}{{\displaystyle \sqrt{x}}}\right)} & =\frac{\mathrm{d}}{\mathrm{d}x}\left(2x^{\frac{3}{2}}+3x^{\frac{1}{2}}-4x^{-\frac{1}{2}}\right)\\
& =2\left(\frac{3}{2}\right)x^{\frac{1}{2}}+3\left(\frac{1}{2}\right)x^{-\frac{1}{2}}-4\left(-\frac{1}{2}\right)x^{-\frac{3}{2}}\\
& =3\sqrt{x}+\frac{3}{2\sqrt{x}}+\frac{2}{x^{\frac{3}{2}}}
\end{aligned}
$
\task
$
\begin{aligned}[t]
{\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{x^{2}-x+3}\right)} & =\frac{1}{2}\left(2x-1\right)\left(x^{2}-x+3\right)^{-\frac{1}{2}}\\
& =\frac{2x-1}{2\sqrt{x^{2}-x+3}}
\end{aligned}
$
\task
$
\begin{aligned}[t]
\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(2x-3\right)\sqrt{x-5}\right] & =\left(2x-3\right)\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{x-5}\right)+\sqrt{x-5}\frac{\mathrm{d}}{\mathrm{d}x}\left(2x-3\right)\\
& =\left(2x-3\right)\left(\frac{1}{2}\right)\left(x-5\right)^{-\frac{1}{2}}+2\sqrt{x-5}\\
& =\frac{2x-3}{2\sqrt{x-5}}+2\sqrt{x-5}\\
& =\frac{2x-3+4\left(x-5\right)}{2\sqrt{x-5}}\\
& =\frac{6x-23}{2\sqrt{x-5}}
\end{aligned}
$
\task
$
\begin{aligned}[t]
{\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left({\displaystyle \frac{x^{2}+1}{1-x}}\right)} & =\frac{\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{2}+1\right)\left(1-x\right)-\frac{\mathrm{d}}{\mathrm{d}x}\left(1-x\right)\left(x^{2}+1\right)}{\left(1-x\right)^{2}}\\
& =\frac{2x\left(1-x\right)+\left(x^{2}+1\right)}{\left(1-x^{2}\right)}\\
& =-\frac{x^{2}-2x-1}{\left(x^{2}-1\right)}
\end{aligned}
$
\end{tasks}
\end{example}
\newpage
\section{Computing Derivatives}
\subsection{Exponential/Logarithmic Functions}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
\begin{tabular}{>{\centering}p{4.5cm}>{\centering}p{10cm}}
General & Function\tabularnewline
\end{tabular}
\begin{tasks}[style=itemize,label-width=3.5ex](2)
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{x}\right)=\mathrm{e}^{x}}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{f(x)}\right)=f'(x)\mathrm{e}^{f(x)}}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\ln\left(x\right)\right)=\frac{1}{x},\hspace{0.5cm}x>0}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\ln f\left(x\right)\right)=\frac{f'(x)}{f(x)}}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}(}a^{x})=a^{x}\ln(a)$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}(}a^{f(x)})=f'(x)a^{f(x)}\ln(a)$
\end{tasks}
\end{tcolorbox}
\begin{example}
Differentiate the following functions with respect to $x$.
\begin{tasks}[label=(\alph*),label-width=3.5ex](3)
\task $\mathrm{e}^{3x^{2}+x-1}$
\task $2\mathrm{e}^{\sin x}$
\task $x^{2}\mathrm{e}^{x}$
\task ${\displaystyle \frac{1}{2\mathrm{e}^{x}+4}}$
\task $\ln\left(\sin x+x^{2}\right)$
\task $\left(\ln x\right)^{2}$
\task $\ln\sqrt{x^{2}+1}$
\task $\log_{5}\left(x^{2}+1\right)$
\end{tasks}
\Solution
\begin{tasks}[label=(\alph*),label-width=3.5ex,after-item-skip = .5cm](2)
\task
$
\begin{aligned}[t]
{\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left({\displaystyle \mathrm{e}^{3x^{2}+x-1}}\right)} & =\frac{\mathrm{d}}{\mathrm{d}x}\left(3x^{2}+x-1\right)\mathrm{e}^{3x^{2}+x-1}\hspace{0.5cm}\\
& =\left(6x+1\right)\mathrm{e}^{3x^{2}+x-1}
\end{aligned}
$
\task
$
\begin{aligned}[t]
{\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left({\displaystyle 2\mathrm{e}^{\sin x}}\right)} & =2\frac{\mathrm{d}}{\mathrm{d}x}\left(\sin x\right)\mathrm{e}^{\sin x}\\
& =2{\displaystyle \mathrm{e}^{\sin x}\cos x}
\end{aligned}
$
\task
$
\begin{aligned}[t]
{\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left({\displaystyle x^{2}\mathrm{e}^{x}}\right)} & =x^{2}\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{x}\right)+\mathrm{e}^{x}\frac{\mathrm{d}}{\mathrm{d}x}x^{2}\\
& =x^{2}\mathrm{e}^{x}+2x\, \mathrm{e}^{x}
\end{aligned}
$
\task
$
\begin{aligned}[t]
{\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{2\mathrm{e}^{x}+4}\right)} & =\left(2\mathrm{e}^{x}+4\right)^{-1}\\
& =\left(-1\right)\left(2\mathrm{e}^{x}\right)\left(2\mathrm{e}^{x}+4\right)^{-2}\\
& =-\frac{2\mathrm{e}^{x}}{\left(2\mathrm{e}^{x}+4\right)^{2}}
\end{aligned}
$
\task
$
\begin{aligned}[t]
{\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[\ln\left(\sin\thinspace x+x^{2}\right)\right]} & =\frac{\frac{\mathrm{d}}{\mathrm{d}x}\left(\sin\thinspace x+x^{2}\right)}{\sin\thinspace x+x^{2}}\\
& =\frac{\cos x+2x}{\sin x+x^{2}}
\end{aligned}
$
\task
$
\begin{aligned}[t]
{\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[\left(\ln x\right)^{2}\right]} & =2\left(\ln x\right)\frac{\mathrm{d}}{\mathrm{d}x}\left(\ln x\right)\\
& =\frac{2\ln x}{x}
\end{aligned}
$
\task
$
\begin{aligned}[t]
\frac{\mathrm{d}}{\mathrm{d}x}\left(\ln\sqrt{x^{2}+1}\right) & =\frac{\mathrm{d}}{\mathrm{d}x}\left[\frac{1}{2}\ln\left(x^{2}+1\right)\right]\\
& =\frac{1}{2}\left(\frac{2x}{x^{2}+1}\right)\\
& =\frac{x}{x^{2}+1}
\end{aligned}
$
\task
$
\begin{aligned}[t]
\frac{\mathrm{d}}{\mathrm{d}x}\left[\log_{5}\left(x^{2}+1\right)\right] & =\frac{\mathrm{d}}{\mathrm{d}x}\left[\frac{\ln\left(x^{2}+1\right)}{\ln5}\right]\\
& =\frac{1}{\ln5}\left(\frac{2x}{x^{2}+1}\right)\\
& =\frac{2x}{\ln5\left(x^{2}+1\right)}
\end{aligned}
$
\end{tasks}
\end{example}
\newpage
\subsection{Trigonometric Functions}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
\begin{tabular}{>{\centering}p{4.5cm}>{\centering}p{10cm}}
General & Function\tabularnewline
\end{tabular}
\begin{tasks}[style=itemize,label-width=3.5ex,column-sep=-1cm](2)
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\sin x\right)=\cos x}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[\sin f\left(x\right)\right]=f'\left(x\right)\cos\left[f\left(x\right)\right]}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\cos x\right)=-\sin x}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[\cos f\left(x\right)\right]=-f'\left(x\right)\sin\left[f\left(x\right)\right]}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\tan x\right)=\sec^{2}x}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[\tan f\left(x\right)\right]=f'\left(x\right)\sec^{2}\left[f\left(x\right)\right]}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\sec x\right)=\sec x\tan x}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[\sec f\left(x\right)\right]=f'\left(x\right)\sec\left[f\left(x\right)\right]}\tan\left[f\left(x\right)\right]$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\csc x\right)=-\csc x\cot x}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[\csc f\left(x\right)\right]=-f'\left(x\right)\csc\left[f\left(x\right)\right]}\cot\left[f\left(x\right)\right]$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\cot\thinspace x\right)=-\csc^{2}x}$
\task ${\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left[\cot f\left(x\right)\right]=-f'\left(x\right)\csc^{2}\left[f\left(x\right)\right]}$
\end{tasks}
\end{tcolorbox}
\begin{example}