You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
File ~/.pyenv/versions/3.8.17/lib/python3.8/site-packages/prompt2model/utils/tevatron_utils/init.py:3
1 """Import Tevatron utility functions."""
2 from prompt2model.utils.tevatron_utils.encode import encode_text
----> 3 from prompt2model.utils.tevatron_utils.retrieve import retrieve_objects
5 all = ("encode_text", "retrieve_objects")
File ~/.pyenv/versions/3.8.17/lib/python3.8/site-packages/prompt2model/utils/tevatron_utils/retrieve.py:11
4 import numpy as np
5 from tevatron.faiss_retriever import BaseFaissIPRetriever
8 def retrieve_objects(
9 query_vector: np.ndarray,
10 encoded_datasets_path: str,
---> 11 document_names: list[str],
12 depth: int,
13 ) -> list[tuple[str, float]]:
14 """Return a ranked list of object indices and their scores.
15
16 Args:
(...)
22 Ranked list of object names and their inner product similarity to the query.
23 """
24 assert query_vector.shape[0] == 1, "Only a single query vector is expected."
TypeError: 'type' object is not subscriptable
The text was updated successfully, but these errors were encountered:
Thank you for finding this and sending a fix @Souryadipstan !
This should have been caught through our automatic tests, but it wasn't for some reason. So I'd like to keep it open even after the original PR is merged so we can add tests.
Getting this while importing OpenAIInstructionParser, TaskType
TypeError Traceback (most recent call last)
Cell In[1], line 1
----> 1 from prompt2model.prompt_parser import OpenAIInstructionParser, TaskType
3 prompt_spec = OpenAIInstructionParser(task_type=TaskType.TEXT_GENERATION)
4 prompt_spec.parse_from_prompt(prompt)
File ~/.pyenv/versions/3.8.17/lib/python3.8/site-packages/prompt2model/prompt_parser/init.py:3
1 """Import PromptSpec classes."""
2 from prompt2model.prompt_parser.base import PromptSpec, TaskType
----> 3 from prompt2model.prompt_parser.instr_parser import OpenAIInstructionParser
4 from prompt2model.prompt_parser.mock import MockPromptSpec
6 all = (
7 "PromptSpec",
8 "TaskType",
9 "MockPromptSpec",
10 "OpenAIInstructionParser",
11 )
File ~/.pyenv/versions/3.8.17/lib/python3.8/site-packages/prompt2model/prompt_parser/instr_parser.py:15
10 from prompt2model.prompt_parser.base import PromptSpec, TaskType
12 from prompt2model.prompt_parser.instr_parser_prompt import ( # isort: split
13 construct_prompt_for_instruction_parsing,
14 )
---> 15 from prompt2model.utils import (
16 OPENAI_ERRORS,
17 ChatGPTAgent,
18 get_formatted_logger,
19 handle_openai_error,
20 )
22 logger = get_formatted_logger("PromptParser")
24 os.environ["TOKENIZERS_PARALLELISM"] = "false"
File ~/.pyenv/versions/3.8.17/lib/python3.8/site-packages/prompt2model/utils/init.py:10
3 from prompt2model.utils.openai_tools import (
4 OPENAI_ERRORS,
5 ChatGPTAgent,
6 count_tokens_from_string,
7 handle_openai_error,
8 )
9 from prompt2model.utils.rng import seed_generator
---> 10 from prompt2model.utils.tevatron_utils import encode_text, retrieve_objects
12 all = ( # noqa: F401
13 "ChatGPTAgent",
14 "encode_text",
(...)
20 "get_formatted_logger",
21 )
File ~/.pyenv/versions/3.8.17/lib/python3.8/site-packages/prompt2model/utils/tevatron_utils/init.py:3
1 """Import Tevatron utility functions."""
2 from prompt2model.utils.tevatron_utils.encode import encode_text
----> 3 from prompt2model.utils.tevatron_utils.retrieve import retrieve_objects
5 all = ("encode_text", "retrieve_objects")
File ~/.pyenv/versions/3.8.17/lib/python3.8/site-packages/prompt2model/utils/tevatron_utils/retrieve.py:11
4 import numpy as np
5 from tevatron.faiss_retriever import BaseFaissIPRetriever
8 def retrieve_objects(
9 query_vector: np.ndarray,
10 encoded_datasets_path: str,
---> 11 document_names: list[str],
12 depth: int,
13 ) -> list[tuple[str, float]]:
14 """Return a ranked list of object indices and their scores.
15
16 Args:
(...)
22 Ranked list of object names and their inner product similarity to the query.
23 """
24 assert query_vector.shape[0] == 1, "Only a single query vector is expected."
TypeError: 'type' object is not subscriptable
The text was updated successfully, but these errors were encountered: