-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfruit_flies.py
206 lines (164 loc) · 6.87 KB
/
fruit_flies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import numpy as np
import argparse
from datetime import datetime
import torch
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from bams.data import KeypointsDataset
from bams.models import BAMS
from bams import HoALoss
def load_fruit_flies(path):
# load raw train data (with annotations for 2 tasks)
data_train = np.load(
os.path.join(path, "fly_group_train.npy"), allow_pickle=True
).item()
sequence_ids_train, sequence_data_train = zip(*data_train["sequences"].items())
keypoints_train = np.stack([data["keypoints"] for data in sequence_data_train])
# load submission data (no annoations)
data_submission = np.load(
os.path.join(path, "fly_group_test.npy"), allow_pickle=True
).item()
sequence_ids_submission, sequence_data_submission = zip(
*data_submission["sequences"].items()
)
keypoints_submission = np.stack(
[data["keypoints"] for data in sequence_data_submission]
)
# concatenate train and submission data
sequence_ids = np.concatenate([sequence_ids_train, sequence_ids_submission], axis=0)
keypoints = np.concatenate([keypoints_train, keypoints_submission], axis=0)
split_mask = np.ones(len(sequence_ids), dtype=bool)
split_mask[-len(sequence_ids_submission) :] = False
# treat each fly independently, keep track of which video each fly came from
num_samples, sequence_length, num_flies, num_keypoints, _ = keypoints.shape
keypoints = keypoints.transpose((0, 2, 1, 3, 4))
keypoints = keypoints.reshape((-1, sequence_length, num_keypoints * 2))
batch = np.repeat(np.arange(num_samples), num_flies)
return keypoints, split_mask, batch
def train(model, device, loader, optimizer, criterion, writer, step, log_every_step):
model.train()
for data in tqdm(loader, position=1, leave=False):
# todo convert to float
input = data["input"].float().to(device) # (B, N, L)
target = data["target_hist"].float().to(device)
ignore_weights = data["ignore_weights"].to(device)
# forward pass
optimizer.zero_grad()
embs, hoa_pred, byol_preds = model(input)
# prediction task
hoa_loss = criterion(target, hoa_pred, ignore_weights)
# contrastive loss: short term
batch_size, sequence_length, emb_dim = embs["short_term"].size()
skip_frames, delta = 60, 5
view_1_id = (
torch.randint(sequence_length - skip_frames - delta, (batch_size,))
+ skip_frames
)
view_2_id = torch.randint(delta + 1, (batch_size,)) + view_1_id
view_2_id = torch.clip(view_2_id, 0, sequence_length)
view_1 = byol_preds["short_term"][torch.arange(batch_size), view_1_id]
view_2 = embs["short_term"][torch.arange(batch_size), view_2_id]
byol_loss_short_term = (
1 - F.cosine_similarity(view_1, view_2.clone().detach(), dim=-1).mean()
)
# contrastive loss: long term
batch_size, sequence_length, emb_dim = embs["long_term"].size()
skip_frames = 100
view_1_id = (
torch.randint(sequence_length - skip_frames, (batch_size,)) + skip_frames
)
view_2_id = (
torch.randint(sequence_length - skip_frames, (batch_size,)) + skip_frames
)
view_1 = byol_preds["long_term"][torch.arange(batch_size), view_1_id]
view_2 = embs["long_term"][torch.arange(batch_size), view_2_id]
byol_loss_long_term = (
1 - F.cosine_similarity(view_1, view_2.clone().detach(), dim=-1).mean()
)
# backprop
loss = 5e2 * hoa_loss + 0.5 * byol_loss_short_term + 0.5 * byol_loss_long_term
loss.backward()
optimizer.step()
step += 1
if step % log_every_step == 0:
writer.add_scalar("train/hoa_loss", hoa_loss.item(), step)
writer.add_scalar(
"train/byol_loss_short_term", byol_loss_short_term.item(), step
)
writer.add_scalar(
"train/byol_loss_long_term", byol_loss_long_term.item(), step
)
writer.add_scalar("train/total_loss", loss.item(), step)
return step
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_root", type=str, default="./data/mabe")
parser.add_argument("--cache_path", type=str, default="./data/mabe/fruit_flies")
parser.add_argument("--hoa_bins", type=int, default=32)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--num_workers", type=int, default=16)
parser.add_argument("--epochs", type=int, default=500)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--weight_decay", type=float, default=4e-5)
parser.add_argument("--log_every_step", type=int, default=50)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# dataset
keypoints, split_mask, batch = load_fruit_flies(args.data_root)
dataset = KeypointsDataset(
keypoints=keypoints,
hoa_bins=args.hoa_bins,
cache_path=args.cache_path,
cache=True,
)
print("Number of sequences:", len(dataset))
# prepare dataloaders
train_loader = DataLoader(
dataset,
batch_size=args.batch_size,
drop_last=True,
num_workers=args.num_workers,
pin_memory=True,
)
# build model
model = BAMS(
input_size=dataset.input_size,
short_term=dict(num_channels=(64, 64, 64, 64), kernel_size=3),
long_term=dict(num_channels=(64, 64, 64, 64, 64), kernel_size=3, dilation=4),
predictor=dict(
hidden_layers=(-1, 256, 512, 512, dataset.target_size * args.hoa_bins)
),
).to(device)
print(model)
model_name = f"bams-fruit-flies-{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}"
writer = SummaryWriter("runs/" + model_name)
main_params = [p for name, p in model.named_parameters() if "byol" not in name]
byol_params = list(model.byol_predictors.parameters())
optimizer = optim.AdamW(
[{"params": main_params}, {"params": byol_params, "lr": args.lr * 10}],
lr=args.lr,
weight_decay=args.weight_decay,
)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[200], gamma=0.1)
criterion = HoALoss(hoa_bins=args.hoa_bins, skip_frames=100)
step = 0
for epoch in tqdm(range(1, args.epochs + 1), position=0):
step = train(
model,
device,
train_loader,
optimizer,
criterion,
writer,
step,
args.log_every_step,
)
scheduler.step()
if epoch % 100 == 0:
torch.save(model.state_dict(), model_name + ".pt")
if __name__ == "__main__":
main()