-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotebook.tex
1529 lines (1180 loc) · 88.5 KB
/
notebook.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Default to the notebook output style
% Inherit from the specified cell style.
\documentclass[11pt]{article}
\usepackage[T1]{fontenc}
% Nicer default font (+ math font) than Computer Modern for most use cases
\usepackage{mathpazo}
% Basic figure setup, for now with no caption control since it's done
% automatically by Pandoc (which extracts ![](path) syntax from Markdown).
\usepackage{graphicx}
% We will generate all images so they have a width \maxwidth. This means
% that they will get their normal width if they fit onto the page, but
% are scaled down if they would overflow the margins.
\makeatletter
\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth
\else\Gin@nat@width\fi}
\makeatother
\let\Oldincludegraphics\includegraphics
% Set max figure width to be 80% of text width, for now hardcoded.
\renewcommand{\includegraphics}[1]{\Oldincludegraphics[width=.8\maxwidth]{#1}}
% Ensure that by default, figures have no caption (until we provide a
% proper Figure object with a Caption API and a way to capture that
% in the conversion process - todo).
\usepackage{caption}
\DeclareCaptionLabelFormat{nolabel}{}
\captionsetup{labelformat=nolabel}
\usepackage{adjustbox} % Used to constrain images to a maximum size
\usepackage{xcolor} % Allow colors to be defined
\usepackage{enumerate} % Needed for markdown enumerations to work
\usepackage{geometry} % Used to adjust the document margins
\usepackage{amsmath} % Equations
\usepackage{amssymb} % Equations
\usepackage{textcomp} % defines textquotesingle
% Hack from http://tex.stackexchange.com/a/47451/13684:
\AtBeginDocument{%
\def\PYZsq{\textquotesingle}% Upright quotes in Pygmentized code
}
\usepackage{upquote} % Upright quotes for verbatim code
\usepackage{eurosym} % defines \euro
\usepackage[mathletters]{ucs} % Extended unicode (utf-8) support
\usepackage[utf8x]{inputenc} % Allow utf-8 characters in the tex document
\usepackage{fancyvrb} % verbatim replacement that allows latex
\usepackage{grffile} % extends the file name processing of package graphics
% to support a larger range
% The hyperref package gives us a pdf with properly built
% internal navigation ('pdf bookmarks' for the table of contents,
% internal cross-reference links, web links for URLs, etc.)
\usepackage{hyperref}
\usepackage{longtable} % longtable support required by pandoc >1.10
\usepackage{booktabs} % table support for pandoc > 1.12.2
\usepackage[inline]{enumitem} % IRkernel/repr support (it uses the enumerate* environment)
\usepackage[normalem]{ulem} % ulem is needed to support strikethroughs (\sout)
% normalem makes italics be italics, not underlines
% Colors for the hyperref package
\definecolor{urlcolor}{rgb}{0,.145,.698}
\definecolor{linkcolor}{rgb}{.71,0.21,0.01}
\definecolor{citecolor}{rgb}{.12,.54,.11}
% ANSI colors
\definecolor{ansi-black}{HTML}{3E424D}
\definecolor{ansi-black-intense}{HTML}{282C36}
\definecolor{ansi-red}{HTML}{E75C58}
\definecolor{ansi-red-intense}{HTML}{B22B31}
\definecolor{ansi-green}{HTML}{00A250}
\definecolor{ansi-green-intense}{HTML}{007427}
\definecolor{ansi-yellow}{HTML}{DDB62B}
\definecolor{ansi-yellow-intense}{HTML}{B27D12}
\definecolor{ansi-blue}{HTML}{208FFB}
\definecolor{ansi-blue-intense}{HTML}{0065CA}
\definecolor{ansi-magenta}{HTML}{D160C4}
\definecolor{ansi-magenta-intense}{HTML}{A03196}
\definecolor{ansi-cyan}{HTML}{60C6C8}
\definecolor{ansi-cyan-intense}{HTML}{258F8F}
\definecolor{ansi-white}{HTML}{C5C1B4}
\definecolor{ansi-white-intense}{HTML}{A1A6B2}
% commands and environments needed by pandoc snippets
% extracted from the output of `pandoc -s`
\providecommand{\tightlist}{%
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
% Add ',fontsize=\small' for more characters per line
\newenvironment{Shaded}{}{}
\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}}
\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.56,0.13,0.00}{{#1}}}
\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
\newcommand{\CharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\StringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textit{{#1}}}}
\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{{#1}}}
\newcommand{\AlertTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}}
\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.02,0.16,0.49}{{#1}}}
\newcommand{\RegionMarkerTok}[1]{{#1}}
\newcommand{\ErrorTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}}
\newcommand{\NormalTok}[1]{{#1}}
% Additional commands for more recent versions of Pandoc
\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.53,0.00,0.00}{{#1}}}
\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.73,0.40,0.53}{{#1}}}
\newcommand{\ImportTok}[1]{{#1}}
\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.73,0.13,0.13}{\textit{{#1}}}}
\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.10,0.09,0.49}{{#1}}}
\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}}
\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.40,0.40,0.40}{{#1}}}
\newcommand{\BuiltInTok}[1]{{#1}}
\newcommand{\ExtensionTok}[1]{{#1}}
\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.74,0.48,0.00}{{#1}}}
\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.49,0.56,0.16}{{#1}}}
\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
% Define a nice break command that doesn't care if a line doesn't already
% exist.
\def\br{\hspace*{\fill} \\* }
% Math Jax compatability definitions
\def\gt{>}
\def\lt{<}
% Document parameters
\title{dog\_app}
% Pygments definitions
\makeatletter
\def\PY@reset{\let\PY@it=\relax \let\PY@bf=\relax%
\let\PY@ul=\relax \let\PY@tc=\relax%
\let\PY@bc=\relax \let\PY@ff=\relax}
\def\PY@tok#1{\csname PY@tok@#1\endcsname}
\def\PY@toks#1+{\ifx\relax#1\empty\else%
\PY@tok{#1}\expandafter\PY@toks\fi}
\def\PY@do#1{\PY@bc{\PY@tc{\PY@ul{%
\PY@it{\PY@bf{\PY@ff{#1}}}}}}}
\def\PY#1#2{\PY@reset\PY@toks#1+\relax+\PY@do{#2}}
\expandafter\def\csname PY@tok@w\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.73,0.73}{##1}}}
\expandafter\def\csname PY@tok@c\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@cp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.74,0.48,0.00}{##1}}}
\expandafter\def\csname PY@tok@k\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.69,0.00,0.25}{##1}}}
\expandafter\def\csname PY@tok@o\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@ow\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}}
\expandafter\def\csname PY@tok@nb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@nf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@nc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@nn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@ne\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.82,0.25,0.23}{##1}}}
\expandafter\def\csname PY@tok@nv\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@no\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.00,0.00}{##1}}}
\expandafter\def\csname PY@tok@nl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.63,0.00}{##1}}}
\expandafter\def\csname PY@tok@ni\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.60,0.60,0.60}{##1}}}
\expandafter\def\csname PY@tok@na\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.49,0.56,0.16}{##1}}}
\expandafter\def\csname PY@tok@nt\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@nd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}}
\expandafter\def\csname PY@tok@s\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@sd\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@si\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}}
\expandafter\def\csname PY@tok@se\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.13}{##1}}}
\expandafter\def\csname PY@tok@sr\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}}
\expandafter\def\csname PY@tok@ss\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@sx\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@m\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@gh\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}}
\expandafter\def\csname PY@tok@gu\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.50,0.00,0.50}{##1}}}
\expandafter\def\csname PY@tok@gd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.00,0.00}{##1}}}
\expandafter\def\csname PY@tok@gi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.63,0.00}{##1}}}
\expandafter\def\csname PY@tok@gr\endcsname{\def\PY@tc##1{\textcolor[rgb]{1.00,0.00,0.00}{##1}}}
\expandafter\def\csname PY@tok@ge\endcsname{\let\PY@it=\textit}
\expandafter\def\csname PY@tok@gs\endcsname{\let\PY@bf=\textbf}
\expandafter\def\csname PY@tok@gp\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}}
\expandafter\def\csname PY@tok@go\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.53,0.53}{##1}}}
\expandafter\def\csname PY@tok@gt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.27,0.87}{##1}}}
\expandafter\def\csname PY@tok@err\endcsname{\def\PY@bc##1{\setlength{\fboxsep}{0pt}\fcolorbox[rgb]{1.00,0.00,0.00}{1,1,1}{\strut ##1}}}
\expandafter\def\csname PY@tok@kc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kd\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kr\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@bp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@fm\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@vc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@vg\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@vi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@vm\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@sa\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@sb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@sc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@dl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@s2\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@sh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@s1\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@mb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@mf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@mh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@mi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@il\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@mo\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@ch\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@cm\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@cpf\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@c1\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@cs\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\def\PYZbs{\char`\\}
\def\PYZus{\char`\_}
\def\PYZob{\char`\{}
\def\PYZcb{\char`\}}
\def\PYZca{\char`\^}
\def\PYZam{\char`\&}
\def\PYZlt{\char`\<}
\def\PYZgt{\char`\>}
\def\PYZsh{\char`\#}
\def\PYZpc{\char`\%}
\def\PYZdl{\char`\$}
\def\PYZhy{\char`\-}
\def\PYZsq{\char`\'}
\def\PYZdq{\char`\"}
\def\PYZti{\char`\~}
% for compatibility with earlier versions
\def\PYZat{@}
\def\PYZlb{[}
\def\PYZrb{]}
\makeatother
% Exact colors from NB
\definecolor{incolor}{rgb}{0.0, 0.0, 0.5}
\definecolor{outcolor}{rgb}{0.545, 0.0, 0.0}
% Prevent overflowing lines due to hard-to-break entities
\sloppy
% Setup hyperref package
\hypersetup{
breaklinks=true, % so long urls are correctly broken across lines
colorlinks=true,
urlcolor=urlcolor,
linkcolor=linkcolor,
citecolor=citecolor,
}
% Slightly bigger margins than the latex defaults
\geometry{verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in}
\begin{document}
\maketitle
\section{Artificial Intelligence
Nanodegree}\label{artificial-intelligence-nanodegree}
\subsection{Convolutional Neural
Networks}\label{convolutional-neural-networks}
\subsection{Project: Write an Algorithm for a Dog Identification
App}\label{project-write-an-algorithm-for-a-dog-identification-app}
\begin{center}\rule{0.5\linewidth}{\linethickness}\end{center}
In this notebook, some template code has already been provided for you,
and you will need to implement additional functionality to successfully
complete this project. You will not need to modify the included code
beyond what is requested. Sections that begin with
\textbf{'(IMPLEMENTATION)'} in the header indicate that the following
block of code will require additional functionality which you must
provide. Instructions will be provided for each section, and the
specifics of the implementation are marked in the code block with a
'TODO' statement. Please be sure to read the instructions carefully!
\begin{quote}
\textbf{Note}: Once you have completed all of the code implementations,
you need to finalize your work by exporting the iPython Notebook as an
HTML document. Before exporting the notebook to html, all of the code
cells need to have been run so that reviewers can see the final
implementation and output. You can then export the notebook by using the
menu above and navigating to \n", "\textbf{File -\textgreater{} Download
as -\textgreater{} HTML (.html)}. Include the finished document along
with this notebook as your submission.
\end{quote}
In addition to implementing code, there will be questions that you must
answer which relate to the project and your implementation. Each section
where you will answer a question is preceded by a \textbf{'Question X'}
header. Carefully read each question and provide thorough answers in the
following text boxes that begin with \textbf{'Answer:'}. Your project
submission will be evaluated based on your answers to each of the
questions and the implementation you provide.
\begin{quote}
\textbf{Note:} Code and Markdown cells can be executed using the
\textbf{Shift + Enter} keyboard shortcut. Markdown cells can be edited
by double-clicking the cell to enter edit mode.
\end{quote}
The rubric contains \emph{optional} "Stand Out Suggestions" for
enhancing the project beyond the minimum requirements. If you decide to
pursue the "Stand Out Suggestions", you should include the code in this
IPython notebook.
\#\# Step 0: Import Datasets
\subsubsection{Import Dog Dataset}\label{import-dog-dataset}
In the code cell below, we import a dataset of dog images. We populate a
few variables through the use of the \texttt{load\_files} function from
the scikit-learn library: - \texttt{train\_files},
\texttt{valid\_files}, \texttt{test\_files} - numpy arrays containing
file paths to images - \texttt{train\_targets}, \texttt{valid\_targets},
\texttt{test\_targets} - numpy arrays containing onehot-encoded
classification labels - \texttt{dog\_names} - list of string-valued dog
breed names for translating labels
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}3}]:} \PY{k+kn}{from} \PY{n+nn}{sklearn}\PY{n+nn}{.}\PY{n+nn}{datasets} \PY{k}{import} \PY{n}{load\PYZus{}files}
\PY{k+kn}{from} \PY{n+nn}{keras}\PY{n+nn}{.}\PY{n+nn}{utils} \PY{k}{import} \PY{n}{np\PYZus{}utils}
\PY{k+kn}{import} \PY{n+nn}{numpy} \PY{k}{as} \PY{n+nn}{np}
\PY{k+kn}{from} \PY{n+nn}{glob} \PY{k}{import} \PY{n}{glob}
\PY{c+c1}{\PYZsh{} define function to load train, test, and validation datasets}
\PY{k}{def} \PY{n+nf}{load\PYZus{}dataset}\PY{p}{(}\PY{n}{path}\PY{p}{)}\PY{p}{:}
\PY{n}{data} \PY{o}{=} \PY{n}{load\PYZus{}files}\PY{p}{(}\PY{n}{path}\PY{p}{)}
\PY{n}{dog\PYZus{}files} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{n}{data}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{filenames}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{)}
\PY{n}{dog\PYZus{}targets} \PY{o}{=} \PY{n}{np\PYZus{}utils}\PY{o}{.}\PY{n}{to\PYZus{}categorical}\PY{p}{(}\PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{n}{data}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{target}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{)}\PY{p}{,} \PY{l+m+mi}{133}\PY{p}{)}
\PY{k}{return} \PY{n}{dog\PYZus{}files}\PY{p}{,} \PY{n}{dog\PYZus{}targets}
\PY{c+c1}{\PYZsh{} load train, test, and validation datasets}
\PY{n}{train\PYZus{}files}\PY{p}{,} \PY{n}{train\PYZus{}targets} \PY{o}{=} \PY{n}{load\PYZus{}dataset}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{dogImages/train}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{n}{valid\PYZus{}files}\PY{p}{,} \PY{n}{valid\PYZus{}targets} \PY{o}{=} \PY{n}{load\PYZus{}dataset}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{dogImages/valid}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{n}{test\PYZus{}files}\PY{p}{,} \PY{n}{test\PYZus{}targets} \PY{o}{=} \PY{n}{load\PYZus{}dataset}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{dogImages/test}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{c+c1}{\PYZsh{} load list of dog names}
\PY{n}{dog\PYZus{}names} \PY{o}{=} \PY{p}{[}\PY{n}{item}\PY{p}{[}\PY{l+m+mi}{20}\PY{p}{:}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{]} \PY{k}{for} \PY{n}{item} \PY{o+ow}{in} \PY{n+nb}{sorted}\PY{p}{(}\PY{n}{glob}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{dogImages/train/*/}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}\PY{p}{)}\PY{p}{]}
\PY{c+c1}{\PYZsh{} print statistics about the dataset}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{There are }\PY{l+s+si}{\PYZpc{}d}\PY{l+s+s1}{ total dog categories.}\PY{l+s+s1}{\PYZsq{}} \PY{o}{\PYZpc{}} \PY{n+nb}{len}\PY{p}{(}\PY{n}{dog\PYZus{}names}\PY{p}{)}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{There are }\PY{l+s+si}{\PYZpc{}s}\PY{l+s+s1}{ total dog images.}\PY{l+s+se}{\PYZbs{}n}\PY{l+s+s1}{\PYZsq{}} \PY{o}{\PYZpc{}} \PY{n+nb}{len}\PY{p}{(}\PY{n}{np}\PY{o}{.}\PY{n}{hstack}\PY{p}{(}\PY{p}{[}\PY{n}{train\PYZus{}files}\PY{p}{,} \PY{n}{valid\PYZus{}files}\PY{p}{,} \PY{n}{test\PYZus{}files}\PY{p}{]}\PY{p}{)}\PY{p}{)}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{There are }\PY{l+s+si}{\PYZpc{}d}\PY{l+s+s1}{ training dog images.}\PY{l+s+s1}{\PYZsq{}} \PY{o}{\PYZpc{}} \PY{n+nb}{len}\PY{p}{(}\PY{n}{train\PYZus{}files}\PY{p}{)}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{There are }\PY{l+s+si}{\PYZpc{}d}\PY{l+s+s1}{ validation dog images.}\PY{l+s+s1}{\PYZsq{}} \PY{o}{\PYZpc{}} \PY{n+nb}{len}\PY{p}{(}\PY{n}{valid\PYZus{}files}\PY{p}{)}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{There are }\PY{l+s+si}{\PYZpc{}d}\PY{l+s+s1}{ test dog images.}\PY{l+s+s1}{\PYZsq{}}\PY{o}{\PYZpc{}} \PY{n+nb}{len}\PY{p}{(}\PY{n}{test\PYZus{}files}\PY{p}{)}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
Using TensorFlow backend.
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
There are 133 total dog categories.
There are 8351 total dog images.
There are 6680 training dog images.
There are 835 validation dog images.
There are 836 test dog images.
\end{Verbatim}
\subsubsection{Import Human Dataset}\label{import-human-dataset}
In the code cell below, we import a dataset of human images, where the
file paths are stored in the numpy array \texttt{human\_files}.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}5}]:} \PY{k+kn}{import} \PY{n+nn}{random}
\PY{n}{random}\PY{o}{.}\PY{n}{seed}\PY{p}{(}\PY{l+m+mi}{8675309}\PY{p}{)}
\PY{k+kn}{import} \PY{n+nn}{os}
\PY{n+nb}{print}\PY{p}{(}\PY{n}{os}\PY{o}{.}\PY{n}{getcwd}\PY{p}{(}\PY{p}{)}\PY{p}{)}
\PY{c+c1}{\PYZsh{} load filenames in shuffled human dataset}
\PY{n}{human\PYZus{}files} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{n}{glob}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{lfw/lfw/*/*}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}\PY{p}{)}
\PY{n}{random}\PY{o}{.}\PY{n}{shuffle}\PY{p}{(}\PY{n}{human\PYZus{}files}\PY{p}{)}
\PY{c+c1}{\PYZsh{} print statistics about the dataset}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{There are }\PY{l+s+si}{\PYZpc{}d}\PY{l+s+s1}{ total human images.}\PY{l+s+s1}{\PYZsq{}} \PY{o}{\PYZpc{}} \PY{n+nb}{len}\PY{p}{(}\PY{n}{human\PYZus{}files}\PY{p}{)}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
/home/neelansh/Projects/Deep/dog-project
There are 13233 total human images.
\end{Verbatim}
\begin{center}\rule{0.5\linewidth}{\linethickness}\end{center}
\#\# Step 1: Detect Humans
We use OpenCV's implementation of
\href{http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html}{Haar
feature-based cascade classifiers} to detect human faces in images.
OpenCV provides many pre-trained face detectors, stored as XML files on
\href{https://github.com/opencv/opencv/tree/master/data/haarcascades}{github}.
We have downloaded one of these detectors and stored it in the
\texttt{haarcascades} directory.
In the next code cell, we demonstrate how to use this detector to find
human faces in a sample image.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}6}]:} \PY{k+kn}{import} \PY{n+nn}{cv2}
\PY{k+kn}{import} \PY{n+nn}{matplotlib}\PY{n+nn}{.}\PY{n+nn}{pyplot} \PY{k}{as} \PY{n+nn}{plt}
\PY{o}{\PYZpc{}}\PY{k}{matplotlib} inline
\PY{c+c1}{\PYZsh{} extract pre\PYZhy{}trained face detector}
\PY{n}{face\PYZus{}cascade} \PY{o}{=} \PY{n}{cv2}\PY{o}{.}\PY{n}{CascadeClassifier}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{haarcascades/haarcascade\PYZus{}frontalface\PYZus{}alt.xml}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{c+c1}{\PYZsh{} load color (BGR) image}
\PY{n}{img} \PY{o}{=} \PY{n}{cv2}\PY{o}{.}\PY{n}{imread}\PY{p}{(}\PY{n}{human\PYZus{}files}\PY{p}{[}\PY{l+m+mi}{3}\PY{p}{]}\PY{p}{)}
\PY{c+c1}{\PYZsh{} convert BGR image to grayscale}
\PY{n}{gray} \PY{o}{=} \PY{n}{cv2}\PY{o}{.}\PY{n}{cvtColor}\PY{p}{(}\PY{n}{img}\PY{p}{,} \PY{n}{cv2}\PY{o}{.}\PY{n}{COLOR\PYZus{}BGR2GRAY}\PY{p}{)}
\PY{c+c1}{\PYZsh{} find faces in image}
\PY{n}{faces} \PY{o}{=} \PY{n}{face\PYZus{}cascade}\PY{o}{.}\PY{n}{detectMultiScale}\PY{p}{(}\PY{n}{gray}\PY{p}{)}
\PY{c+c1}{\PYZsh{} print number of faces detected in the image}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Number of faces detected:}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n+nb}{len}\PY{p}{(}\PY{n}{faces}\PY{p}{)}\PY{p}{)}
\PY{c+c1}{\PYZsh{} get bounding box for each detected face}
\PY{k}{for} \PY{p}{(}\PY{n}{x}\PY{p}{,}\PY{n}{y}\PY{p}{,}\PY{n}{w}\PY{p}{,}\PY{n}{h}\PY{p}{)} \PY{o+ow}{in} \PY{n}{faces}\PY{p}{:}
\PY{c+c1}{\PYZsh{} add bounding box to color image}
\PY{n}{cv2}\PY{o}{.}\PY{n}{rectangle}\PY{p}{(}\PY{n}{img}\PY{p}{,}\PY{p}{(}\PY{n}{x}\PY{p}{,}\PY{n}{y}\PY{p}{)}\PY{p}{,}\PY{p}{(}\PY{n}{x}\PY{o}{+}\PY{n}{w}\PY{p}{,}\PY{n}{y}\PY{o}{+}\PY{n}{h}\PY{p}{)}\PY{p}{,}\PY{p}{(}\PY{l+m+mi}{255}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{)}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}
\PY{c+c1}{\PYZsh{} convert BGR image to RGB for plotting}
\PY{n}{cv\PYZus{}rgb} \PY{o}{=} \PY{n}{cv2}\PY{o}{.}\PY{n}{cvtColor}\PY{p}{(}\PY{n}{img}\PY{p}{,} \PY{n}{cv2}\PY{o}{.}\PY{n}{COLOR\PYZus{}BGR2RGB}\PY{p}{)}
\PY{c+c1}{\PYZsh{} display the image, along with bounding box}
\PY{n}{plt}\PY{o}{.}\PY{n}{imshow}\PY{p}{(}\PY{n}{cv\PYZus{}rgb}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
Number of faces detected: 1
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_5_1.png}
\end{center}
{ \hspace*{\fill} \\}
Before using any of the face detectors, it is standard procedure to
convert the images to grayscale. The \texttt{detectMultiScale} function
executes the classifier stored in \texttt{face\_cascade} and takes the
grayscale image as a parameter.
In the above code, \texttt{faces} is a numpy array of detected faces,
where each row corresponds to a detected face. Each detected face is a
1D array with four entries that specifies the bounding box of the
detected face. The first two entries in the array (extracted in the
above code as \texttt{x} and \texttt{y}) specify the horizontal and
vertical positions of the top left corner of the bounding box. The last
two entries in the array (extracted here as \texttt{w} and \texttt{h})
specify the width and height of the box.
\subsubsection{Write a Human Face
Detector}\label{write-a-human-face-detector}
We can use this procedure to write a function that returns \texttt{True}
if a human face is detected in an image and \texttt{False} otherwise.
This function, aptly named \texttt{face\_detector}, takes a
string-valued file path to an image as input and appears in the code
block below.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}7}]:} \PY{c+c1}{\PYZsh{} returns \PYZdq{}True\PYZdq{} if face is detected in image stored at img\PYZus{}path}
\PY{k}{def} \PY{n+nf}{face\PYZus{}detector}\PY{p}{(}\PY{n}{img\PYZus{}path}\PY{p}{)}\PY{p}{:}
\PY{n}{img} \PY{o}{=} \PY{n}{cv2}\PY{o}{.}\PY{n}{imread}\PY{p}{(}\PY{n}{img\PYZus{}path}\PY{p}{)}
\PY{n}{gray} \PY{o}{=} \PY{n}{cv2}\PY{o}{.}\PY{n}{cvtColor}\PY{p}{(}\PY{n}{img}\PY{p}{,} \PY{n}{cv2}\PY{o}{.}\PY{n}{COLOR\PYZus{}BGR2GRAY}\PY{p}{)}
\PY{n}{faces} \PY{o}{=} \PY{n}{face\PYZus{}cascade}\PY{o}{.}\PY{n}{detectMultiScale}\PY{p}{(}\PY{n}{gray}\PY{p}{)}
\PY{k}{return} \PY{n+nb}{len}\PY{p}{(}\PY{n}{faces}\PY{p}{)} \PY{o}{\PYZgt{}} \PY{l+m+mi}{0}
\end{Verbatim}
\subsubsection{(IMPLEMENTATION) Assess the Human Face
Detector}\label{implementation-assess-the-human-face-detector}
\textbf{Question 1:} Use the code cell below to test the performance of
the \texttt{face\_detector} function.\\
- What percentage of the first 100 images in \texttt{human\_files} have
a detected human face?\\
- What percentage of the first 100 images in \texttt{dog\_files} have a
detected human face?
Ideally, we would like 100\% of human images with a detected face and
0\% of dog images with a detected face. You will see that our algorithm
falls short of this goal, but still gives acceptable performance. We
extract the file paths for the first 100 images from each of the
datasets and store them in the numpy arrays \texttt{human\_files\_short}
and \texttt{dog\_files\_short}.
\textbf{Answer:}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}8}]:} \PY{n}{human\PYZus{}files\PYZus{}short} \PY{o}{=} \PY{n}{human\PYZus{}files}\PY{p}{[}\PY{p}{:}\PY{l+m+mi}{100}\PY{p}{]}
\PY{n}{dog\PYZus{}files\PYZus{}short} \PY{o}{=} \PY{n}{train\PYZus{}files}\PY{p}{[}\PY{p}{:}\PY{l+m+mi}{100}\PY{p}{]}
\PY{c+c1}{\PYZsh{} Do NOT modify the code above this line.}
\PY{c+c1}{\PYZsh{}\PYZsh{} TODO: Test the performance of the face\PYZus{}detector algorithm }
\PY{c+c1}{\PYZsh{}\PYZsh{} on the images in human\PYZus{}files\PYZus{}short and dog\PYZus{}files\PYZus{}short.}
\PY{n}{c1} \PY{o}{=} \PY{n}{c2} \PY{o}{=} \PY{l+m+mi}{0}
\PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n+nb}{range}\PY{p}{(}\PY{l+m+mi}{100}\PY{p}{)}\PY{p}{:}
\PY{k}{if} \PY{n}{face\PYZus{}detector}\PY{p}{(}\PY{n}{human\PYZus{}files\PYZus{}short}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{)}\PY{p}{:}
\PY{n}{c1} \PY{o}{+}\PY{o}{=} \PY{l+m+mi}{1}
\PY{k}{if} \PY{n}{face\PYZus{}detector}\PY{p}{(}\PY{n}{dog\PYZus{}files\PYZus{}short}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{)}\PY{p}{:}
\PY{n}{c2} \PY{o}{+}\PY{o}{=} \PY{l+m+mi}{1}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{For images of Humans = }\PY{l+s+s2}{\PYZdq{}}\PY{o}{+}\PY{n+nb}{str}\PY{p}{(}\PY{n}{c1}\PY{p}{)}\PY{o}{+}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{\PYZpc{}}\PY{l+s+se}{\PYZbs{}n}\PY{l+s+s2}{For images of Dogs = }\PY{l+s+s2}{\PYZdq{}}\PY{o}{+}\PY{n+nb}{str}\PY{p}{(}\PY{n}{c2}\PY{p}{)}\PY{o}{+}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{\PYZpc{}}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
For images of Humans = 100\%
For images of Dogs = 11\%
\end{Verbatim}
\textbf{Question 2:} This algorithmic choice necessitates that we
communicate to the user that we accept human images only when they
provide a clear view of a face (otherwise, we risk having unneccessarily
frustrated users!). In your opinion, is this a reasonable expectation to
pose on the user? If not, can you think of a way to detect humans in
images that does not necessitate an image with a clearly presented face?
\textbf{Answer:}
We suggest the face detector from OpenCV as a potential way to detect
human images in your algorithm, but you are free to explore other
approaches, especially approaches that make use of deep learning :).
Please use the code cell below to design and test your own face
detection algorithm. If you decide to pursue this \emph{optional} task,
report performance on each of the datasets.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor} }]:} \PY{c+c1}{\PYZsh{}\PYZsh{} (Optional) TODO: Report the performance of another }
\PY{c+c1}{\PYZsh{}\PYZsh{} face detection algorithm on the LFW dataset}
\PY{c+c1}{\PYZsh{}\PYZsh{}\PYZsh{} Feel free to use as many code cells as needed.}
\end{Verbatim}
\begin{center}\rule{0.5\linewidth}{\linethickness}\end{center}
\#\# Step 2: Detect Dogs
In this section, we use a pre-trained
\href{http://ethereon.github.io/netscope/\#/gist/db945b393d40bfa26006}{ResNet-50}
model to detect dogs in images. Our first line of code downloads the
ResNet-50 model, along with weights that have been trained on
\href{http://www.image-net.org/}{ImageNet}, a very large, very popular
dataset used for image classification and other vision tasks. ImageNet
contains over 10 million URLs, each linking to an image containing an
object from one of
\href{https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a}{1000
categories}. Given an image, this pre-trained ResNet-50 model returns a
prediction (derived from the available categories in ImageNet) for the
object that is contained in the image.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}9}]:} \PY{k+kn}{from} \PY{n+nn}{keras}\PY{n+nn}{.}\PY{n+nn}{applications}\PY{n+nn}{.}\PY{n+nn}{resnet50} \PY{k}{import} \PY{n}{ResNet50}
\PY{c+c1}{\PYZsh{} define ResNet50 model}
\PY{n}{ResNet50\PYZus{}model} \PY{o}{=} \PY{n}{ResNet50}\PY{p}{(}\PY{n}{weights}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{imagenet}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\end{Verbatim}
\subsubsection{Pre-process the Data}\label{pre-process-the-data}
When using TensorFlow as backend, Keras CNNs require a 4D array (which
we'll also refer to as a 4D tensor) as input, with shape
\[
(\text{nb_samples}, \text{rows}, \text{columns}, \text{channels}),
\]
where \texttt{nb\_samples} corresponds to the total number of images (or
samples), and \texttt{rows}, \texttt{columns}, and \texttt{channels}
correspond to the number of rows, columns, and channels for each image,
respectively.
The \texttt{path\_to\_tensor} function below takes a string-valued file
path to a color image as input and returns a 4D tensor suitable for
supplying to a Keras CNN. The function first loads the image and resizes
it to a square image that is \(224 \times 224\) pixels. Next, the image
is converted to an array, which is then resized to a 4D tensor. In this
case, since we are working with color images, each image has three
channels. Likewise, since we are processing a single image (or sample),
the returned tensor will always have shape
\[
(1, 224, 224, 3).
\]
The \texttt{paths\_to\_tensor} function takes a numpy array of
string-valued image paths as input and returns a 4D tensor with shape
\[
(\text{nb_samples}, 224, 224, 3).
\]
Here, \texttt{nb\_samples} is the number of samples, or number of
images, in the supplied array of image paths. It is best to think of
\texttt{nb\_samples} as the number of 3D tensors (where each 3D tensor
corresponds to a different image) in your dataset!
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}10}]:} \PY{k+kn}{from} \PY{n+nn}{keras}\PY{n+nn}{.}\PY{n+nn}{preprocessing} \PY{k}{import} \PY{n}{image}
\PY{k+kn}{from} \PY{n+nn}{tqdm} \PY{k}{import} \PY{n}{tqdm}
\PY{k}{def} \PY{n+nf}{path\PYZus{}to\PYZus{}tensor}\PY{p}{(}\PY{n}{img\PYZus{}path}\PY{p}{)}\PY{p}{:}
\PY{c+c1}{\PYZsh{} loads RGB image as PIL.Image.Image type}
\PY{n}{img} \PY{o}{=} \PY{n}{image}\PY{o}{.}\PY{n}{load\PYZus{}img}\PY{p}{(}\PY{n}{img\PYZus{}path}\PY{p}{,} \PY{n}{target\PYZus{}size}\PY{o}{=}\PY{p}{(}\PY{l+m+mi}{224}\PY{p}{,} \PY{l+m+mi}{224}\PY{p}{)}\PY{p}{)}
\PY{c+c1}{\PYZsh{} convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3)}
\PY{n}{x} \PY{o}{=} \PY{n}{image}\PY{o}{.}\PY{n}{img\PYZus{}to\PYZus{}array}\PY{p}{(}\PY{n}{img}\PY{p}{)}
\PY{c+c1}{\PYZsh{} convert 3D tensor to 4D tensor with shape (1, 224, 224, 3) and return 4D tensor}
\PY{k}{return} \PY{n}{np}\PY{o}{.}\PY{n}{expand\PYZus{}dims}\PY{p}{(}\PY{n}{x}\PY{p}{,} \PY{n}{axis}\PY{o}{=}\PY{l+m+mi}{0}\PY{p}{)}
\PY{k}{def} \PY{n+nf}{paths\PYZus{}to\PYZus{}tensor}\PY{p}{(}\PY{n}{img\PYZus{}paths}\PY{p}{)}\PY{p}{:}
\PY{n}{list\PYZus{}of\PYZus{}tensors} \PY{o}{=} \PY{p}{[}\PY{n}{path\PYZus{}to\PYZus{}tensor}\PY{p}{(}\PY{n}{img\PYZus{}path}\PY{p}{)} \PY{k}{for} \PY{n}{img\PYZus{}path} \PY{o+ow}{in} \PY{n}{tqdm}\PY{p}{(}\PY{n}{img\PYZus{}paths}\PY{p}{)}\PY{p}{]}
\PY{k}{return} \PY{n}{np}\PY{o}{.}\PY{n}{vstack}\PY{p}{(}\PY{n}{list\PYZus{}of\PYZus{}tensors}\PY{p}{)}
\end{Verbatim}
\subsubsection{Making Predictions with
ResNet-50}\label{making-predictions-with-resnet-50}
Getting the 4D tensor ready for ResNet-50, and for any other pre-trained
model in Keras, requires some additional processing. First, the RGB
image is converted to BGR by reordering the channels. All pre-trained
models have the additional normalization step that the mean pixel
(expressed in RGB as \([103.939, 116.779, 123.68]\) and calculated from
all pixels in all images in ImageNet) must be subtracted from every
pixel in each image. This is implemented in the imported function
\texttt{preprocess\_input}. If you're curious, you can check the code
for \texttt{preprocess\_input}
\href{https://github.com/fchollet/keras/blob/master/keras/applications/imagenet_utils.py}{here}.
Now that we have a way to format our image for supplying to ResNet-50,
we are now ready to use the model to extract the predictions. This is
accomplished with the \texttt{predict} method, which returns an array
whose \(i\)-th entry is the model's predicted probability that the image
belongs to the \(i\)-th ImageNet category. This is implemented in the
\texttt{ResNet50\_predict\_labels} function below.
By taking the argmax of the predicted probability vector, we obtain an
integer corresponding to the model's predicted object class, which we
can identify with an object category through the use of this
\href{https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a}{dictionary}.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}11}]:} \PY{k+kn}{from} \PY{n+nn}{keras}\PY{n+nn}{.}\PY{n+nn}{applications}\PY{n+nn}{.}\PY{n+nn}{resnet50} \PY{k}{import} \PY{n}{preprocess\PYZus{}input}\PY{p}{,} \PY{n}{decode\PYZus{}predictions}
\PY{k}{def} \PY{n+nf}{ResNet50\PYZus{}predict\PYZus{}labels}\PY{p}{(}\PY{n}{img\PYZus{}path}\PY{p}{)}\PY{p}{:}
\PY{c+c1}{\PYZsh{} returns prediction vector for image located at img\PYZus{}path}
\PY{n}{img} \PY{o}{=} \PY{n}{preprocess\PYZus{}input}\PY{p}{(}\PY{n}{path\PYZus{}to\PYZus{}tensor}\PY{p}{(}\PY{n}{img\PYZus{}path}\PY{p}{)}\PY{p}{)}
\PY{k}{return} \PY{n}{np}\PY{o}{.}\PY{n}{argmax}\PY{p}{(}\PY{n}{ResNet50\PYZus{}model}\PY{o}{.}\PY{n}{predict}\PY{p}{(}\PY{n}{img}\PY{p}{)}\PY{p}{)}
\end{Verbatim}
\subsubsection{Write a Dog Detector}\label{write-a-dog-detector}
While looking at the
\href{https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a}{dictionary},
you will notice that the categories corresponding to dogs appear in an
uninterrupted sequence and correspond to dictionary keys 151-268,
inclusive, to include all categories from
\texttt{\textquotesingle{}Chihuahua\textquotesingle{}} to
\texttt{\textquotesingle{}Mexican\ hairless\textquotesingle{}}. Thus, in
order to check to see if an image is predicted to contain a dog by the
pre-trained ResNet-50 model, we need only check if the
\texttt{ResNet50\_predict\_labels} function above returns a value
between 151 and 268 (inclusive).
We use these ideas to complete the \texttt{dog\_detector} function
below, which returns \texttt{True} if a dog is detected in an image (and
\texttt{False} if not).
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}12}]:} \PY{c+c1}{\PYZsh{}\PYZsh{}\PYZsh{} returns \PYZdq{}True\PYZdq{} if a dog is detected in the image stored at img\PYZus{}path}
\PY{k}{def} \PY{n+nf}{dog\PYZus{}detector}\PY{p}{(}\PY{n}{img\PYZus{}path}\PY{p}{)}\PY{p}{:}
\PY{n}{prediction} \PY{o}{=} \PY{n}{ResNet50\PYZus{}predict\PYZus{}labels}\PY{p}{(}\PY{n}{img\PYZus{}path}\PY{p}{)}
\PY{k}{return} \PY{p}{(}\PY{p}{(}\PY{n}{prediction} \PY{o}{\PYZlt{}}\PY{o}{=} \PY{l+m+mi}{268}\PY{p}{)} \PY{o}{\PYZam{}} \PY{p}{(}\PY{n}{prediction} \PY{o}{\PYZgt{}}\PY{o}{=} \PY{l+m+mi}{151}\PY{p}{)}\PY{p}{)}
\end{Verbatim}
\subsubsection{(IMPLEMENTATION) Assess the Dog
Detector}\label{implementation-assess-the-dog-detector}
\textbf{Question 3:} Use the code cell below to test the performance of
your \texttt{dog\_detector} function.\\
- What percentage of the images in \texttt{human\_files\_short} have a
detected dog?\\
- What percentage of the images in \texttt{dog\_files\_short} have a
detected dog?
\textbf{Answer:}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}13}]:} \PY{c+c1}{\PYZsh{}\PYZsh{}\PYZsh{} TODO: Test the performance of the dog\PYZus{}detector function}
\PY{c+c1}{\PYZsh{}\PYZsh{}\PYZsh{} on the images in human\PYZus{}files\PYZus{}short and dog\PYZus{}files\PYZus{}short.}
\PY{n}{c1} \PY{o}{=} \PY{n}{c2} \PY{o}{=} \PY{l+m+mi}{0}
\PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n+nb}{range}\PY{p}{(}\PY{l+m+mi}{100}\PY{p}{)}\PY{p}{:}
\PY{k}{if} \PY{n}{dog\PYZus{}detector}\PY{p}{(}\PY{n}{human\PYZus{}files\PYZus{}short}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{)}\PY{p}{:}
\PY{n}{c1} \PY{o}{+}\PY{o}{=} \PY{l+m+mi}{1}
\PY{k}{if} \PY{n}{dog\PYZus{}detector}\PY{p}{(}\PY{n}{dog\PYZus{}files\PYZus{}short}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{)}\PY{p}{:}
\PY{n}{c2} \PY{o}{+}\PY{o}{=} \PY{l+m+mi}{1}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{For images of Humans = }\PY{l+s+s2}{\PYZdq{}}\PY{o}{+}\PY{n+nb}{str}\PY{p}{(}\PY{n}{c1}\PY{p}{)}\PY{o}{+}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{\PYZpc{}}\PY{l+s+se}{\PYZbs{}n}\PY{l+s+s2}{For images of Dogs = }\PY{l+s+s2}{\PYZdq{}}\PY{o}{+}\PY{n+nb}{str}\PY{p}{(}\PY{n}{c2}\PY{p}{)}\PY{o}{+}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{\PYZpc{}}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
For images of Humans = 1\%
For images of Dogs = 100\%
\end{Verbatim}
\begin{center}\rule{0.5\linewidth}{\linethickness}\end{center}
\#\# Step 3: Create a CNN to Classify Dog Breeds (from Scratch)
Now that we have functions for detecting humans and dogs in images, we
need a way to predict breed from images. In this step, you will create a
CNN that classifies dog breeds. You must create your CNN \emph{from
scratch} (so, you can't use transfer learning \emph{yet}!), and you must
attain a test accuracy of at least 1\%. In Step 5 of this notebook, you
will have the opportunity to use transfer learning to create a CNN that
attains greatly improved accuracy.
Be careful with adding too many trainable layers! More parameters means
longer training, which means you are more likely to need a GPU to
accelerate the training process. Thankfully, Keras provides a handy
estimate of the time that each epoch is likely to take; you can
extrapolate this estimate to figure out how long it will take for your
algorithm to train.
We mention that the task of assigning breed to dogs from images is
considered exceptionally challenging. To see why, consider that
\emph{even a human} would have great difficulty in distinguishing
between a Brittany and a Welsh Springer Spaniel.
\begin{longtable}[]{@{}ll@{}}
\toprule
Brittany & Welsh Springer Spaniel\tabularnewline
\midrule
\endhead
&\tabularnewline
\bottomrule
\end{longtable}
It is not difficult to find other dog breed pairs with minimal
inter-class variation (for instance, Curly-Coated Retrievers and
American Water Spaniels).
\begin{longtable}[]{@{}ll@{}}
\toprule
Curly-Coated Retriever & American Water Spaniel\tabularnewline
\midrule
\endhead
&\tabularnewline
\bottomrule
\end{longtable}
Likewise, recall that labradors come in yellow, chocolate, and black.
Your vision-based algorithm will have to conquer this high intra-class
variation to determine how to classify all of these different shades as
the same breed.
\begin{longtable}[]{@{}ll@{}}
\toprule
Yellow Labrador & Chocolate Labrador\tabularnewline
\midrule
\endhead
&\tabularnewline
\bottomrule
\end{longtable}
We also mention that random chance presents an exceptionally low bar:
setting aside the fact that the classes are slightly imabalanced, a
random guess will provide a correct answer roughly 1 in 133 times, which
corresponds to an accuracy of less than 1\%.
Remember that the practice is far ahead of the theory in deep learning.
Experiment with many different architectures, and trust your intuition.
And, of course, have fun!
\subsubsection{Pre-process the Data}\label{pre-process-the-data}
We rescale the images by dividing every pixel in every image by 255.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor} }]:} \PY{k+kn}{from} \PY{n+nn}{PIL} \PY{k}{import} \PY{n}{ImageFile}
\PY{n}{ImageFile}\PY{o}{.}\PY{n}{LOAD\PYZus{}TRUNCATED\PYZus{}IMAGES} \PY{o}{=} \PY{k+kc}{True}
\PY{c+c1}{\PYZsh{} pre\PYZhy{}process the data for Keras}
\PY{n}{train\PYZus{}tensors} \PY{o}{=} \PY{n}{paths\PYZus{}to\PYZus{}tensor}\PY{p}{(}\PY{n}{train\PYZus{}files}\PY{p}{)}\PY{o}{.}\PY{n}{astype}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{float32}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{o}{/}\PY{l+m+mi}{255}
\PY{n}{valid\PYZus{}tensors} \PY{o}{=} \PY{n}{paths\PYZus{}to\PYZus{}tensor}\PY{p}{(}\PY{n}{valid\PYZus{}files}\PY{p}{)}\PY{o}{.}\PY{n}{astype}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{float32}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{o}{/}\PY{l+m+mi}{255}
\PY{n}{test\PYZus{}tensors} \PY{o}{=} \PY{n}{paths\PYZus{}to\PYZus{}tensor}\PY{p}{(}\PY{n}{test\PYZus{}files}\PY{p}{)}\PY{o}{.}\PY{n}{astype}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{float32}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{o}{/}\PY{l+m+mi}{255}
\end{Verbatim}
\subsubsection{(IMPLEMENTATION) Model
Architecture}\label{implementation-model-architecture}
Create a CNN to classify dog breed. At the end of your code cell block,
summarize the layers of your model by executing the line:
\begin{verbatim}
model.summary()
\end{verbatim}
We have imported some Python modules to get you started, but feel free
to import as many modules as you need. If you end up getting stuck,
here's a hint that specifies a model that trains relatively fast on CPU
and attains \textgreater{}1\% test accuracy in 5 epochs:
\begin{figure}
\centering
\includegraphics{images/sample_cnn.png}
\caption{Sample CNN}
\end{figure}
\textbf{Question 4:} Outline the steps you took to get to your final CNN
architecture and your reasoning at each step. If you chose to use the
hinted architecture above, describe why you think that CNN architecture
should work well for the image classification task.
\textbf{Answer:}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}14}]:} \PY{k+kn}{from} \PY{n+nn}{keras}\PY{n+nn}{.}\PY{n+nn}{layers} \PY{k}{import} \PY{n}{Conv2D}\PY{p}{,} \PY{n}{MaxPooling2D}\PY{p}{,} \PY{n}{GlobalAveragePooling2D}
\PY{k+kn}{from} \PY{n+nn}{keras}\PY{n+nn}{.}\PY{n+nn}{layers} \PY{k}{import} \PY{n}{Dropout}\PY{p}{,} \PY{n}{Activation}\PY{p}{,} \PY{n}{Flatten}\PY{p}{,} \PY{n}{Dense}
\PY{k+kn}{from} \PY{n+nn}{keras}\PY{n+nn}{.}\PY{n+nn}{models} \PY{k}{import} \PY{n}{Sequential}
\PY{k+kn}{from} \PY{n+nn}{keras}\PY{n+nn}{.}\PY{n+nn}{layers}\PY{n+nn}{.}\PY{n+nn}{normalization} \PY{k}{import} \PY{n}{BatchNormalization}
\PY{c+c1}{\PYZsh{} print(valid\PYZus{}tensors.shape)}
\PY{c+c1}{\PYZsh{} print(valid\PYZus{}targets.shape)}
\PY{c+c1}{\PYZsh{} print(train\PYZus{}tensors.shape)}
\PY{c+c1}{\PYZsh{} print(train\PYZus{}targets.shape)}
\PY{n}{model} \PY{o}{=} \PY{n}{Sequential}\PY{p}{(}\PY{p}{)}
\PY{c+c1}{\PYZsh{} TODO: Define your architecture.}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{Conv2D}\PY{p}{(}\PY{n}{filters}\PY{o}{=}\PY{l+m+mi}{16}\PY{p}{,} \PY{n}{kernel\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{strides}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{,} \PY{n}{padding}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{valid}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{activation}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{relu}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{input\PYZus{}shape}\PY{o}{=}\PY{p}{(}\PY{l+m+mi}{224}\PY{p}{,} \PY{l+m+mi}{224}\PY{p}{,} \PY{l+m+mi}{3}\PY{p}{)}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{MaxPooling2D}\PY{p}{(}\PY{n}{pool\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{Conv2D}\PY{p}{(}\PY{n}{filters}\PY{o}{=}\PY{l+m+mi}{32}\PY{p}{,} \PY{n}{kernel\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{strides}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{,} \PY{n}{padding}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{valid}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{activation}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{relu}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{MaxPooling2D}\PY{p}{(}\PY{n}{pool\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{Conv2D}\PY{p}{(}\PY{n}{filters}\PY{o}{=}\PY{l+m+mi}{64}\PY{p}{,} \PY{n}{kernel\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{strides}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{,} \PY{n}{padding}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{valid}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{activation}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{relu}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{MaxPooling2D}\PY{p}{(}\PY{n}{pool\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{Conv2D}\PY{p}{(}\PY{n}{filters}\PY{o}{=}\PY{l+m+mi}{128}\PY{p}{,} \PY{n}{kernel\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{strides}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{,} \PY{n}{padding}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{valid}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{activation}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{relu}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{MaxPooling2D}\PY{p}{(}\PY{n}{pool\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{Conv2D}\PY{p}{(}\PY{n}{filters}\PY{o}{=}\PY{l+m+mi}{256}\PY{p}{,} \PY{n}{kernel\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{strides}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{,} \PY{n}{padding}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{valid}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{activation}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{relu}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{MaxPooling2D}\PY{p}{(}\PY{n}{pool\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{Conv2D}\PY{p}{(}\PY{n}{filters}\PY{o}{=}\PY{l+m+mi}{512}\PY{p}{,} \PY{n}{kernel\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{strides}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{,} \PY{n}{padding}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{valid}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{activation}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{relu}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{MaxPooling2D}\PY{p}{(}\PY{n}{pool\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{GlobalAveragePooling2D}\PY{p}{(}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{add}\PY{p}{(}\PY{n}{Dense}\PY{p}{(}\PY{l+m+mi}{133}\PY{p}{,} \PY{n}{activation}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{softmax}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
Layer (type) Output Shape Param \#
=================================================================
conv2d\_1 (Conv2D) (None, 223, 223, 16) 208
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
max\_pooling2d\_2 (MaxPooling2 (None, 111, 111, 16) 0
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
conv2d\_2 (Conv2D) (None, 110, 110, 32) 2080
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
max\_pooling2d\_3 (MaxPooling2 (None, 55, 55, 32) 0
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
conv2d\_3 (Conv2D) (None, 54, 54, 64) 8256
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
max\_pooling2d\_4 (MaxPooling2 (None, 27, 27, 64) 0
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
conv2d\_4 (Conv2D) (None, 26, 26, 128) 32896
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
max\_pooling2d\_5 (MaxPooling2 (None, 13, 13, 128) 0
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
conv2d\_5 (Conv2D) (None, 12, 12, 256) 131328
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
max\_pooling2d\_6 (MaxPooling2 (None, 6, 6, 256) 0
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
conv2d\_6 (Conv2D) (None, 5, 5, 512) 524800
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
max\_pooling2d\_7 (MaxPooling2 (None, 2, 2, 512) 0
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
global\_average\_pooling2d\_1 ( (None, 512) 0
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
dense\_1 (Dense) (None, 133) 68229
=================================================================
Total params: 767,797
Trainable params: 767,797
Non-trainable params: 0
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
\end{Verbatim}
\subsubsection{Compile the Model}\label{compile-the-model}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}15}]:} \PY{n}{model}\PY{o}{.}\PY{n}{compile}\PY{p}{(}\PY{n}{optimizer}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{rmsprop}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{loss}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{categorical\PYZus{}crossentropy}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{metrics}\PY{o}{=}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{accuracy}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{)}
\end{Verbatim}
\subsubsection{(IMPLEMENTATION) Train the
Model}\label{implementation-train-the-model}
Train your model in the code cell below. Use model checkpointing to save
the model that attains the best validation loss.
You are welcome to
\href{https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html}{augment
the training data}, but this is not a requirement.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor} }]:} \PY{k+kn}{from} \PY{n+nn}{keras}\PY{n+nn}{.}\PY{n+nn}{callbacks} \PY{k}{import} \PY{n}{ModelCheckpoint}
\PY{c+c1}{\PYZsh{}\PYZsh{}\PYZsh{} TODO: specify the number of epochs that you would like to use to train the model.}
\PY{n}{epochs} \PY{o}{=} \PY{o}{.}\PY{o}{.}\PY{o}{.}
\PY{c+c1}{\PYZsh{}\PYZsh{}\PYZsh{} Do NOT modify the code below this line.}
\PY{n}{checkpointer} \PY{o}{=} \PY{n}{ModelCheckpoint}\PY{p}{(}\PY{n}{filepath}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{saved\PYZus{}models/weights.best.from\PYZus{}scratch.hdf5}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}
\PY{n}{verbose}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{,} \PY{n}{save\PYZus{}best\PYZus{}only}\PY{o}{=}\PY{k+kc}{True}\PY{p}{)}
\PY{n}{model}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{n}{train\PYZus{}tensors}\PY{p}{,} \PY{n}{train\PYZus{}targets}\PY{p}{,}
\PY{n}{validation\PYZus{}data}\PY{o}{=}\PY{p}{(}\PY{n}{valid\PYZus{}tensors}\PY{p}{,} \PY{n}{valid\PYZus{}targets}\PY{p}{)}\PY{p}{,}
\PY{n}{epochs}\PY{o}{=}\PY{n}{epochs}\PY{p}{,} \PY{n}{batch\PYZus{}size}\PY{o}{=}\PY{l+m+mi}{20}\PY{p}{,} \PY{n}{callbacks}\PY{o}{=}\PY{p}{[}\PY{n}{checkpointer}\PY{p}{]}\PY{p}{,} \PY{n}{verbose}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{)}
\end{Verbatim}
\subsubsection{Load the Model with the Best Validation
Loss}\label{load-the-model-with-the-best-validation-loss}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor} }]:} \PY{n}{model}\PY{o}{.}\PY{n}{load\PYZus{}weights}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{saved\PYZus{}models/weights.best.from\PYZus{}scratch.hdf5}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\end{Verbatim}
\subsubsection{Test the Model}\label{test-the-model}
Try out your model on the test dataset of dog images. Ensure that your
test accuracy is greater than 1\%.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor} }]:} \PY{c+c1}{\PYZsh{} get index of predicted dog breed for each image in test set}
\PY{n}{dog\PYZus{}breed\PYZus{}predictions} \PY{o}{=} \PY{p}{[}\PY{n}{np}\PY{o}{.}\PY{n}{argmax}\PY{p}{(}\PY{n}{model}\PY{o}{.}\PY{n}{predict}\PY{p}{(}\PY{n}{np}\PY{o}{.}\PY{n}{expand\PYZus{}dims}\PY{p}{(}\PY{n}{tensor}\PY{p}{,} \PY{n}{axis}\PY{o}{=}\PY{l+m+mi}{0}\PY{p}{)}\PY{p}{)}\PY{p}{)} \PY{k}{for} \PY{n}{tensor} \PY{o+ow}{in} \PY{n}{test\PYZus{}tensors}\PY{p}{]}
\PY{c+c1}{\PYZsh{} report test accuracy}
\PY{n}{test\PYZus{}accuracy} \PY{o}{=} \PY{l+m+mi}{100}\PY{o}{*}\PY{n}{np}\PY{o}{.}\PY{n}{sum}\PY{p}{(}\PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{n}{dog\PYZus{}breed\PYZus{}predictions}\PY{p}{)}\PY{o}{==}\PY{n}{np}\PY{o}{.}\PY{n}{argmax}\PY{p}{(}\PY{n}{test\PYZus{}targets}\PY{p}{,} \PY{n}{axis}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{)}\PY{o}{/}\PY{n+nb}{len}\PY{p}{(}\PY{n}{dog\PYZus{}breed\PYZus{}predictions}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Test accuracy: }\PY{l+s+si}{\PYZpc{}.4f}\PY{l+s+si}{\PYZpc{}\PYZpc{}}\PY{l+s+s1}{\PYZsq{}} \PY{o}{\PYZpc{}} \PY{n}{test\PYZus{}accuracy}\PY{p}{)}
\end{Verbatim}
\begin{center}\rule{0.5\linewidth}{\linethickness}\end{center}
\#\# Step 4: Use a CNN to Classify Dog Breeds
To reduce training time without sacrificing accuracy, we show you how to
train a CNN using transfer learning. In the following step, you will get
a chance to use transfer learning to train your own CNN.
\subsubsection{Obtain Bottleneck
Features}\label{obtain-bottleneck-features}
\begin{Verbatim}[commandchars=\\\{\}]