-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathtrain_dqn.py
233 lines (184 loc) · 7.95 KB
/
train_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Training file for the DQN
import gym
import torch
from torch.autograd import Variable
import torch.nn as nn
from models import DQN
import random
import numpy as np
import torch.optim as optim
from itertools import count
import math
import torch.nn.functional as F
# Constants for training
use_cuda = torch.cuda.is_available()
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
# Preprocessing
steps_done = 0
def downsample(img):
return img[::2, ::2]
def preprocess(img):
img = downsample(img)
return img.astype(np.float)
def choose_best_action(model, state):
state = Variable(torch.FloatTensor(state))
if use_cuda:
state = state.cuda()
model = model.cuda()
state = state.unsqueeze(0)
state = torch.transpose(state, 1, 3)
state = torch.transpose(state, 2, 3)
Q_values = model(state)
value, indice = Q_values.max(1)
action = indice.data[0]
return action
def get_epsilon_iteration(steps_done):
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
return eps_threshold
def fit_batch(target_dqn_model, dqn_model, buffer, batch_size, gamma, n, criterion,
iteration, learning_rate, use_polyak_averaging=True, polyak_constant=0.001):
# Step 1: Sample mini batch from B uniformly
if buffer.get_buffer_size() < batch_size:
return 0, 0
batch = buffer.sample_batch(batch_size)
states = []
new_states = []
actions = []
rewards = []
for k in batch:
state, action, new_state, reward = k
states.append(state)
actions.append(action)
new_states.append(new_state)
rewards.append(reward)
states = torch.FloatTensor(states)
states = torch.transpose(states, 1, 3)
states = torch.transpose(states, 2, 3)
states = Variable(states)
new_states = torch.FloatTensor(new_states)
new_states = torch.transpose(new_states, 1, 3)
new_states = torch.transpose(new_states, 2, 3)
new_states = Variable(new_states)
rewards = torch.FloatTensor(rewards)
rewards = Variable(rewards)
actions = torch.LongTensor(actions)
actions = actions.view(-1, 1)
actions = Variable(actions)
if use_cuda:
states = states.cuda()
actions = actions.cuda()
rewards = rewards.cuda()
new_states = new_states.cuda()
target_dqn_model = target_dqn_model.cuda()
dqn_model = dqn_model.cuda()
for p in target_dqn_model.parameters():
p.requires_grad = False
# Step 2: Compute the target values using the target network
Q_values = target_dqn_model(new_states)
next_Q_values, indice = Q_values.max(1)
y = rewards + gamma*next_Q_values
y = y.detach()
model_parameters = dqn_model.parameters()
optimizer = optim.Adam(model_parameters, lr=learning_rate)
# Zero the optimizer gradients
optimizer.zero_grad()
# Forward pass
outputs = dqn_model(states)
outputs = outputs.gather(1, actions)
loss = criterion(outputs, y)
loss.backward()
# Gradient clipping
for p in dqn_model.parameters():
p.grad.data.clamp(-1,1)
optimizer.step()
# Stabilizes training as proposed in the DDPG paper
if use_polyak_averaging:
t = polyak_constant
target_dqn_model.conv1.weight.data = t*(dqn_model.conv1.weight.data) + \
(1-t)*(target_dqn_model.conv1.weight.data)
target_dqn_model.bn1.weight.data = t * (dqn_model.bn1.weight.data) + \
(1 - t) * (target_dqn_model.bn1.weight.data)
target_dqn_model.conv2.weight.data = t * (dqn_model.conv2.weight.data) + \
(1 - t) * (target_dqn_model.conv2.weight.data)
target_dqn_model.bn2.weight.data = t * (dqn_model.bn2.weight.data) + \
(1 - t) * (target_dqn_model.bn2.weight.data)
target_dqn_model.conv3.weight.data = t * (dqn_model.conv3.weight.data) + \
(1 - t) * (target_dqn_model.conv3.weight.data)
target_dqn_model.bn3.weight.data = t * (dqn_model.bn3.weight.data) + \
(1 - t) * (target_dqn_model.bn3.weight.data)
target_dqn_model.fully_connected_layer.weight.data = t * (dqn_model.fully_connected_layer.weight.data) + \
(1 - t) * (target_dqn_model.fully_connected_layer.weight.data)
target_dqn_model.output_layer.weight.data = t * (dqn_model.output_layer.weight.data) + \
(1 - t) * (target_dqn_model.output_layer.weight.data)
else:
if n == iteration:
target_dqn_model.load_state_dict(dqn_model.state_dict())
return loss, torch.sum(rewards)
def train(target_dqn_model, dqn_model, buffer, batch_size, gamma, n, num_epochs, criterion, learning_rate,
use_double_q_learning = False):
for iteration in range(num_epochs):
print("Epoch ", iteration)
state = env.reset()
state = preprocess(state)
loss = 0
re = 0
# Populate the buffer
for t in count():
global steps_done
epsilon = get_epsilon_iteration(steps_done)
steps_done +=1
# Choose a random action
if random.random() < epsilon:
action = env.action_space.sample()
new_state, reward, done, info = env.step(action)
else:
if use_double_q_learning:
action = choose_best_action(dqn_model, state)
else:
action = choose_best_action(target_dqn_model, state)
new_state, reward, done, info = env.step(action)
new_state = preprocess(new_state)
buffer.add((state, action, new_state, reward))
state = new_state
# Fit the model on a batch of data
loss_n, r = fit_batch(target_dqn_model, dqn_model, buffer, batch_size, gamma, n, criterion, iteration, learning_rate)
#print(loss)
loss += loss_n
re += r
if done:
break
print("Loss for episode", iteration, " is ", loss.data/t)
print("Reward for episode", iteration, " is ", re)
return target_dqn_model, dqn_model
if __name__ == '__main__':
env = gym.make('BreakoutDeterministic-v4')
input_shape = env.observation_space.shape
img_height, img_width, img_channels = input_shape
num_actions = env.action_space.n
dqn_model = DQN.ActionPredictionNetwork(num_conv_layers=16, input_channels=img_channels,
output_q_value=num_actions, pool_kernel_size=3,
kernel_size=3, dense_layer_features=256,
IM_HEIGHT=img_height//2, IM_WIDTH=img_width//2)
target_dqn_model = DQN.ActionPredictionNetwork(num_conv_layers=16, input_channels=img_channels,
output_q_value=num_actions, pool_kernel_size=3,
kernel_size=3, dense_layer_features=256,
IM_HEIGHT=img_height//2, IM_WIDTH=img_width//2)
buffer = DQN.ReplayBuffer(size_of_buffer=10000) # Experience Replay
batch_size= 32
gamma = 0.99 # Discount factor
num_epochs = 1000
learning_rate = 0.01
# Huber loss to aid small gradients
criterion = F.smooth_l1_loss
n = 10 # Target network parameter update
if use_cuda:
target_dqn_model = target_dqn_model.cuda()
dqn_model = dqn_model.cuda()
model, _ = train(target_dqn_model, dqn_model, buffer, batch_size, gamma, n, num_epochs, criterion, learning_rate,
use_double_q_learning=True)
# Saving the model
path = '/home/kumar/anaconda3/bin/python /home/kumar/PycharmProjects/Deep-Q-Learning/'
torch.save(model.state_dict(), path)