-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathsampler.py
390 lines (319 loc) · 14.7 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import pdb
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
""" Different samplers, each specifying how to sample pixels for the AP loss.
"""
class FullSampler(nn.Module):
""" all pixels are selected
- feats: keypoint descriptors
- confs: reliability values
"""
def __init__(self):
nn.Module.__init__(self)
self.mode = 'bilinear'
self.padding = 'zeros'
@staticmethod
def _aflow_to_grid(aflow):
H, W = aflow.shape[2:]
grid = aflow.permute(0,2,3,1).clone()
grid[:,:,:,0] *= 2/(W-1)
grid[:,:,:,1] *= 2/(H-1)
grid -= 1
grid[torch.isnan(grid)] = 9e9 # invalids
return grid
def _warp(self, feats, confs, aflow):
if isinstance(aflow, tuple): return aflow # result was precomputed
feat1, feat2 = feats
conf1, conf2 = confs if confs else (None,None)
B, two, H, W = aflow.shape
D = feat1.shape[1]
assert feat1.shape == feat2.shape == (B, D, H, W) # D = 128, B = batch
assert conf1.shape == conf2.shape == (B, 1, H, W) if confs else True
# warp img2 to img1
grid = self._aflow_to_grid(aflow)
ones2 = feat2.new_ones(feat2[:,0:1].shape)
feat2to1 = F.grid_sample(feat2, grid, mode=self.mode, padding_mode=self.padding)
mask2to1 = F.grid_sample(ones2, grid, mode='nearest', padding_mode='zeros')
conf2to1 = F.grid_sample(conf2, grid, mode=self.mode, padding_mode=self.padding) \
if confs else None
return feat2to1, mask2to1.byte(), conf2to1
def _warp_positions(self, aflow):
B, two, H, W = aflow.shape
assert two == 2
Y = torch.arange(H, device=aflow.device)
X = torch.arange(W, device=aflow.device)
XY = torch.stack(torch.meshgrid(Y,X)[::-1], dim=0)
XY = XY[None].expand(B, 2, H, W).float()
grid = self._aflow_to_grid(aflow)
XY2 = F.grid_sample(XY, grid, mode='bilinear', padding_mode='zeros')
return XY, XY2
class SubSampler (FullSampler):
""" pixels are selected in an uniformly spaced grid
"""
def __init__(self, border, subq, subd, perimage=False):
FullSampler.__init__(self)
assert subq % subd == 0, 'subq must be multiple of subd'
self.sub_q = subq
self.sub_d = subd
self.border = border
self.perimage = perimage
def __repr__(self):
return "SubSampler(border=%d, subq=%d, subd=%d, perimage=%d)" % (
self.border, self.sub_q, self.sub_d, self.perimage)
def __call__(self, feats, confs, aflow):
feat1, conf1 = feats[0], (confs[0] if confs else None)
# warp with optical flow in img1 coords
feat2, mask2, conf2 = self._warp(feats, confs, aflow)
# subsample img1
slq = slice(self.border, -self.border or None, self.sub_q)
feat1 = feat1[:, :, slq, slq]
conf1 = conf1[:, :, slq, slq] if confs else None
# subsample img2
sld = slice(self.border, -self.border or None, self.sub_d)
feat2 = feat2[:, :, sld, sld]
mask2 = mask2[:, :, sld, sld]
conf2 = conf2[:, :, sld, sld] if confs else None
B, D, Hq, Wq = feat1.shape
B, D, Hd, Wd = feat2.shape
# compute gt
if self.perimage or self.sub_q != self.sub_d:
# compute ground-truth by comparing pixel indices
f = feats[0][0:1,0] if self.perimage else feats[0][:,0]
idxs = torch.arange(f.numel(), dtype=torch.int64, device=feat1.device).view(f.shape)
idxs1 = idxs[:, slq, slq].reshape(-1,Hq*Wq)
idxs2 = idxs[:, sld, sld].reshape(-1,Hd*Wd)
if self.perimage:
gt = (idxs1[0].view(-1,1) == idxs2[0].view(1,-1))
gt = gt[None,:,:].expand(B, Hq*Wq, Hd*Wd)
else :
gt = (idxs1.view(-1,1) == idxs2.view(1,-1))
else:
gt = torch.eye(feat1[:,0].numel(), dtype=torch.uint8, device=feat1.device) # always binary for AP loss
# compute all images together
queries = feat1.reshape(B,D,-1) # B x D x (Hq x Wq)
database = feat2.reshape(B,D,-1) # B x D x (Hd x Wd)
if self.perimage:
queries = queries.transpose(1,2) # B x (Hd x Wd) x D
scores = torch.bmm(queries, database) # B x (Hq x Wq) x (Hd x Wd)
else:
queries = queries .transpose(1,2).reshape(-1,D) # (B x Hq x Wq) x D
database = database.transpose(1,0).reshape(D,-1) # D x (B x Hd x Wd)
scores = torch.matmul(queries, database) # (B x Hq x Wq) x (B x Hd x Wd)
# compute reliability
qconf = (conf1 + conf2)/2 if confs else None
assert gt.shape == scores.shape
return scores, gt, mask2, qconf
class NghSampler (FullSampler):
""" all pixels in a small neighborhood
"""
def __init__(self, ngh, subq=1, subd=1, ignore=1, border=None):
FullSampler.__init__(self)
assert 0 <= ignore < ngh
self.ngh = ngh
self.ignore = ignore
assert subd <= ngh
self.sub_q = subq
self.sub_d = subd
if border is None: border = ngh
assert border >= ngh, 'border has to be larger than ngh'
self.border = border
def __repr__(self):
return "NghSampler(ngh=%d, subq=%d, subd=%d, ignore=%d, border=%d)" % (
self.ngh, self.sub_q, self.sub_d, self.ignore, self.border)
def trans(self, arr, i, j):
s = lambda i: slice(self.border+i, i-self.border or None, self.sub_q)
return arr[:,:,s(j),s(i)]
def __call__(self, feats, confs, aflow):
feat1, conf1 = feats[0], (confs[0] if confs else None)
# warp with optical flow in img1 coords
feat2, mask2, conf2 = self._warp(feats, confs, aflow)
qfeat = self.trans(feat1,0,0)
qconf = (self.trans(conf1,0,0) + self.trans(conf2,0,0)) / 2 if confs else None
mask2 = self.trans(mask2,0,0)
scores_at = lambda i,j: (qfeat * self.trans(feat2,i,j)).sum(dim=1)
# compute scores for all neighbors
B, D = feat1.shape[:2]
min_d = self.ignore**2
max_d = self.ngh**2
rad = (self.ngh//self.sub_d) * self.ngh # make an integer multiple
negs = []
offsets = []
for j in range(-rad, rad+1, self.sub_d):
for i in range(-rad, rad+1, self.sub_d):
if not(min_d < i*i + j*j <= max_d):
continue # out of scope
offsets.append((i,j)) # Note: this list is just for debug
negs.append( scores_at(i,j) )
scores = torch.stack([scores_at(0,0)] + negs, dim=-1)
gt = scores.new_zeros(scores.shape, dtype=torch.uint8)
gt[..., 0] = 1 # only the center point is positive
return scores, gt, mask2, qconf
class FarNearSampler (FullSampler):
""" Sample pixels from *both* a small neighborhood *and* far-away pixels.
How it works?
1) Queries are sampled from img1,
- at least `border` pixels from borders and
- on a grid with step = `subq`
2) Close database pixels
- from the corresponding image (img2),
- within a `ngh` distance radius
- on a grid with step = `subd_ngh`
- ignored if distance to query is >0 and <=`ignore`
3) Far-away database pixels from ,
- from all batch images in `img2`
- at least `border` pixels from borders
- on a grid with step = `subd_far`
"""
def __init__(self, subq, ngh, subd_ngh, subd_far, border=None, ignore=1,
maxpool_ngh=False ):
FullSampler.__init__(self)
border = border or ngh
assert ignore < ngh < subd_far, 'neighborhood needs to be smaller than far step'
self.close_sampler = NghSampler(ngh=ngh, subq=subq, subd=subd_ngh,
ignore=not(maxpool_ngh), border=border)
self.faraway_sampler = SubSampler(border=border, subq=subq, subd=subd_far)
self.maxpool_ngh = maxpool_ngh
def __repr__(self):
c,f = self.close_sampler, self.faraway_sampler
res = "FarNearSampler(subq=%d, ngh=%d" % (c.sub_q, c.ngh)
res += ", subd_ngh=%d, subd_far=%d" % (c.sub_d, f.sub_d)
res += ", border=%d, ign=%d" % (f.border, c.ignore)
res += ", maxpool_ngh=%d" % self.maxpool_ngh
return res+')'
def __call__(self, feats, confs, aflow):
# warp with optical flow in img1 coords
aflow = self._warp(feats, confs, aflow)
# sample ngh pixels
scores1, gt1, msk1, conf1 = self.close_sampler(feats, confs, aflow)
scores1, gt1 = scores1.view(-1,scores1.shape[-1]), gt1.view(-1,gt1.shape[-1])
if self.maxpool_ngh:
# we consider all scores from ngh as potential positives
scores1, self._cached_maxpool_ngh = scores1.max(dim=1,keepdim=True)
gt1 = gt1[:, 0:1]
# sample far pixels
scores2, gt2, msk2, conf2 = self.faraway_sampler(feats, confs, aflow)
# assert (msk1 == msk2).all()
# assert (conf1 == conf2).all()
return (torch.cat((scores1,scores2),dim=1),
torch.cat((gt1, gt2), dim=1),
msk1, conf1 if confs else None)
class NghSampler2 (nn.Module):
""" Similar to NghSampler, but doesnt warp the 2nd image.
Distance to GT => 0 ... pos_d ... neg_d ... ngh
Pixel label => + + + + + + 0 0 - - - - - - -
Subsample on query side: if > 0, regular grid
< 0, random points
In both cases, the number of query points is = W*H/subq**2
"""
def __init__(self, ngh, subq=1, subd=1, pos_d=0, neg_d=2, border=None,
maxpool_pos=True, subd_neg=0):
nn.Module.__init__(self)
assert 0 <= pos_d < neg_d <= (ngh if ngh else 99)
self.ngh = ngh
self.pos_d = pos_d
self.neg_d = neg_d
assert subd <= ngh or ngh == 0
assert subq != 0
self.sub_q = subq
self.sub_d = subd
self.sub_d_neg = subd_neg
if border is None: border = ngh
assert border >= ngh, 'border has to be larger than ngh'
self.border = border
self.maxpool_pos = maxpool_pos
self.precompute_offsets()
def precompute_offsets(self):
pos_d2 = self.pos_d**2
neg_d2 = self.neg_d**2
rad2 = self.ngh**2
rad = (self.ngh//self.sub_d) * self.ngh # make an integer multiple
pos = []
neg = []
for j in range(-rad, rad+1, self.sub_d):
for i in range(-rad, rad+1, self.sub_d):
d2 = i*i + j*j
if d2 <= pos_d2:
pos.append( (i,j) )
elif neg_d2 <= d2 <= rad2:
neg.append( (i,j) )
self.register_buffer('pos_offsets', torch.LongTensor(pos).view(-1,2).t())
self.register_buffer('neg_offsets', torch.LongTensor(neg).view(-1,2).t())
def gen_grid(self, step, aflow):
B, two, H, W = aflow.shape
dev = aflow.device
b1 = torch.arange(B, device=dev)
if step > 0:
# regular grid
x1 = torch.arange(self.border, W-self.border, step, device=dev)
y1 = torch.arange(self.border, H-self.border, step, device=dev)
H1, W1 = len(y1), len(x1)
x1 = x1[None,None,:].expand(B,H1,W1).reshape(-1)
y1 = y1[None,:,None].expand(B,H1,W1).reshape(-1)
b1 = b1[:,None,None].expand(B,H1,W1).reshape(-1)
shape = (B, H1, W1)
else:
# randomly spread
n = (H - 2*self.border) * (W - 2*self.border) // step**2
x1 = torch.randint(self.border, W-self.border, (n,), device=dev)
y1 = torch.randint(self.border, H-self.border, (n,), device=dev)
x1 = x1[None,:].expand(B,n).reshape(-1)
y1 = y1[None,:].expand(B,n).reshape(-1)
b1 = b1[:,None].expand(B,n).reshape(-1)
shape = (B, n)
return b1, y1, x1, shape
def forward(self, feats, confs, aflow, **kw):
B, two, H, W = aflow.shape
assert two == 2
feat1, conf1 = feats[0], (confs[0] if confs else None)
feat2, conf2 = feats[1], (confs[1] if confs else None)
# positions in the first image
b1, y1, x1, shape = self.gen_grid(self.sub_q, aflow)
# sample features from first image
feat1 = feat1[b1, :, y1, x1]
qconf = conf1[b1, :, y1, x1].view(shape) if confs else None
#sample GT from second image
b2 = b1
xy2 = (aflow[b1, :, y1, x1] + 0.5).long().t()
mask = (0 <= xy2[0]) * (0 <= xy2[1]) * (xy2[0] < W) * (xy2[1] < H)
mask = mask.view(shape)
def clamp(xy):
torch.clamp(xy[0], 0, W-1, out=xy[0])
torch.clamp(xy[1], 0, H-1, out=xy[1])
return xy
# compute positive scores
xy2p = clamp(xy2[:,None,:] + self.pos_offsets[:,:,None])
pscores = (feat1[None,:,:] * feat2[b2, :, xy2p[1], xy2p[0]]).sum(dim=-1).t()
# xy1p = clamp(torch.stack((x1,y1))[:,None,:] + self.pos_offsets[:,:,None])
# grid = FullSampler._aflow_to_grid(aflow)
# feat2p = F.grid_sample(feat2, grid, mode='bilinear', padding_mode='border')
# pscores = (feat1[None,:,:] * feat2p[b1,:,xy1p[1], xy1p[0]]).sum(dim=-1).t()
if self.maxpool_pos:
pscores, pos = pscores.max(dim=1, keepdim=True)
if confs:
sel = clamp(xy2 + self.pos_offsets[:,pos.view(-1)])
qconf = (qconf + conf2[b2, :, sel[1], sel[0]].view(shape))/2
# compute negative scores
xy2n = clamp(xy2[:,None,:] + self.neg_offsets[:,:,None])
nscores = (feat1[None,:,:] * feat2[b2, :, xy2n[1], xy2n[0]]).sum(dim=-1).t()
if self.sub_d_neg:
# add distractors from a grid
b3, y3, x3, _ = self.gen_grid(self.sub_d_neg, aflow)
distractors = feat2[b3, :, y3, x3]
dscores = torch.matmul(feat1, distractors.t())
del distractors
# remove scores that corresponds to positives or nulls
dis2 = (x3 - xy2[0][:,None])**2 + (y3 - xy2[1][:,None])**2
dis2 += (b3 != b2[:,None]).long() * self.neg_d**2
dscores[dis2 < self.neg_d**2] = 0
scores = torch.cat((pscores, nscores, dscores), dim=1)
else:
# concat everything
scores = torch.cat((pscores, nscores), dim=1)
gt = scores.new_zeros(scores.shape, dtype=torch.uint8)
gt[:, :pscores.shape[1]] = 1
return scores, gt, mask, qconf