-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathevaluate_on_images.py
154 lines (117 loc) · 5.78 KB
/
evaluate_on_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# SeiT++
# Copyright (c) 2024-present NAVER Cloud Corp.
# CC BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/)
import sys
import argparse
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torchvision import transforms
from torchvision.datasets.folder import ImageFolder
from engine_seit import tokenize_and_evaluate
from token_transform import build_codebook, CC
from timm.models import create_model
import models
import util.misc as misc
import warnings
warnings.filterwarnings("ignore", message="Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.")
def get_args_parser():
parser = argparse.ArgumentParser('DeiT evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
# Model parameters
parser.add_argument('--model', default='deit_base_token_32', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--model-path', default='weights/trained-vit.ckpt', type=str, metavar='MODEL',
help='path to trained ViT weight')
parser.add_argument('--codebook-path', default='weights/codebook.ckpt', type=str,
help='path to pretrained codebook')
parser.add_argument('--vit-input-size', default=28, type=int, help='input image size for classifier')
# Tokenizer parameters
parser.add_argument('--tokenizer-path', default='weights/tokenizer.ckpt', type=str, metavar='MODEL',
help='path to tokenizer weight')
parser.add_argument('--tokenizer-code-path', type=str, metavar='MODEL',
help='path to tokenizer code (can be cloned from https://github.com/thuanz123/enhancing-transformers.git)')
parser.add_argument('--tokenizer-input-size', default=256, type=int, help='input image size for tokenizer')
# Dataset parameters
parser.add_argument('--data-path', type=str, help="dataset path")
parser.add_argument('--nb_classes', default=1000, type=int, help="number of classes")
# etc.
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
misc.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
codebook = build_codebook(args, is_train=False)
sys.path.append(args.tokenizer_code_path)
tokenizer = torch.load(args.tokenizer_path)
tokenizer.to(device)
token_transform = CC(args.vit_input_size)
transform = transforms.Compose([
transforms.Resize((args.tokenizer_input_size, args.tokenizer_input_size), interpolation=3),
transforms.ToTensor(),
])
dataset = ImageFolder(args.data_path, transform=transform)
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
if args.dist_eval:
if len(dataset) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler = torch.utils.data.DistributedSampler(
dataset, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler = torch.utils.data.SequentialSampler(dataset)
else:
sampler = torch.utils.data.SequentialSampler(dataset)
data_loader = torch.utils.data.DataLoader(
dataset, sampler=sampler,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
print(f"Creating model: {args.model}")
model_args = {
"model_name": args.model,
"pretrained": False,
"num_classes": args.nb_classes,
}
model_args["img_size"] = args.vit_input_size
model = create_model(**model_args)
ckpt = torch.load(args.model_path, map_location='cpu')["model"]
model.load_state_dict(ckpt)
model.to(device)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
test_stats = tokenize_and_evaluate(data_loader, model, token_transform, codebook, tokenizer, device)
print(f"Accuracy of the network on the {len(dataset)} test images: {test_stats['acc1']:.1f}%")
return
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)