-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinat18_train.py
529 lines (434 loc) · 19.8 KB
/
inat18_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# reference code: https://github.com/kaidic/LDAM-DRW/blob/master/cifar_train.py
import argparse
import os
import random
import time
import datetime
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.models as models
from imbalance_data.lt_data import LT_Dataset
from losses import LDAMLoss, BalancedSoftmaxLoss
from opts import parser
import warnings
import math
from torch.nn import Parameter
import torch.nn.functional as F
from util.util import *
from util.randaugment import rand_augment_transform, GaussianBlur
import util.moco_loader as moco_loader
class NormedLinear(nn.Module):
def __init__(self, in_features, out_features):
super(NormedLinear, self).__init__()
self.weight = Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
def forward(self, x):
out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
return out
best_acc1 = 0
def main():
args = parser.parse_args()
args.store_name = '_'.join(
[args.dataset, args.arch, args.loss_type, args.train_rule, args.data_aug, str(args.imb_factor),
str(args.rand_number),
str(args.mixup_prob), args.exp_str])
prepare_folders(args)
if args.cos:
print("use cosine LR")
if args.seed is not None:
torch.manual_seed(args.seed)
cudnn.deterministic = True
np.random.seed(args.seed)
random.seed(args.seed)
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
ngpus_per_node = torch.cuda.device_count()
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
global train_cls_num_list
global cls_num_list_cuda
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# create model
print("=> creating model '{}'".format(args.arch))
num_classes = 8142
model = getattr(models, args.arch)(pretrained=False)
num_ftrs = model.fc.in_features
if args.loss_type == 'LDAM':
model.fc = NormedLinear(num_ftrs, num_classes)
else:
model.fc = nn.Linear(num_ftrs, num_classes)
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
model = torch.nn.DataParallel(model).cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cuda:0')
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
if args.use_randaug:
print("use randaug!!")
normalize = transforms.Normalize(mean=[0.466, 0.471, 0.380], std=[0.195, 0.194, 0.192])
rgb_mean = (0.485, 0.456, 0.406)
ra_params = dict(translate_const=int(224 * 0.45),
img_mean=tuple([min(255, round(255 * x)) for x in rgb_mean]), )
augmentation_randncls = [
transforms.RandomResizedCrop(224, scale=(0.08, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.0)
], p=1.0),
rand_augment_transform('rand-n{}-m{}-mstd0.5'.format(2, 10), ra_params),
transforms.ToTensor(),
normalize,
]
augmentation_sim = [
transforms.RandomResizedCrop(224),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.0) # not strengthened
], p=1.0),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([moco_loader.GaussianBlur([.1, 2.])], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
]
transform_train = [transforms.Compose(augmentation_randncls), transforms.Compose(augmentation_sim)]
transform_val = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize])
else:
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
# transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0),
transforms.ToTensor(),
transforms.Normalize([0.466, 0.471, 0.380], [0.195, 0.194, 0.192])
])
transform_val = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.466, 0.471, 0.380], [0.195, 0.194, 0.192])
])
train_dataset = LT_Dataset(args.root, args.root + '/iNaturalist18_train.txt', transform_train,
use_randaug=args.use_randaug)
val_dataset = LT_Dataset(args.root, args.root + '/iNaturalist18_val.txt', transform_val)
num_classes = len(np.unique(train_dataset.targets))
assert num_classes == 8142
cls_num_list = [0] * num_classes
for label in train_dataset.targets:
cls_num_list[label] += 1
print('cls num list:')
print(cls_num_list)
args.cls_num_list = cls_num_list
train_cls_num_list = np.array(cls_num_list)
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
print("data loaders loaded")
weighted_train_loader = None
weighted_cls_num_list = [0] * num_classes
if args.data_aug == 'CMO':
cls_weight = 1.0 / (np.array(cls_num_list) ** args.weighted_alpha)
cls_weight = cls_weight / np.sum(cls_weight) * len(cls_num_list)
samples_weight = np.array([cls_weight[t] for t in train_dataset.targets])
samples_weight = torch.from_numpy(samples_weight)
samples_weight = samples_weight.double()
print(samples_weight)
weighted_sampler = torch.utils.data.WeightedRandomSampler(samples_weight, len(samples_weight),
replacement=True)
weighted_train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size,
num_workers=args.workers, pin_memory=True,
sampler=weighted_sampler)
cls_num_list_cuda = torch.from_numpy(np.array(cls_num_list)).float().cuda()
# init log for training
log_training = open(os.path.join(args.root_log, args.store_name, 'log_train.csv'), 'w')
log_testing = open(os.path.join(args.root_log, args.store_name, 'log_test.csv'), 'w')
with open(os.path.join(args.root_log, args.store_name, 'args.txt'), 'w') as f:
f.write(str(args))
# tf_writer = SummaryWriter(log_dir=os.path.join(args.root_log, args.store_name))
start_time = time.time()
print("Training started!")
for epoch in range(args.start_epoch, args.epochs):
if args.use_randaug:
paco_adjust_learning_rate(optimizer, epoch, args)
else:
adjust_learning_rate(optimizer, epoch, args)
if args.train_rule == 'None':
train_sampler = None
per_cls_weights = None
elif args.train_rule == 'CBReweight':
train_sampler = None
beta = 0.9999
effective_num = 1.0 - np.power(beta, cls_num_list)
per_cls_weights = (1.0 - beta) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).cuda(args.gpu)
elif args.train_rule == 'DRW':
train_sampler = None
idx = epoch // 160
betas = [0, 0.9999]
effective_num = 1.0 - np.power(betas[idx], cls_num_list)
per_cls_weights = (1.0 - betas[idx]) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).cuda(args.gpu)
else:
warnings.warn('Sample rule is not listed')
if args.loss_type == 'CE':
criterion = nn.CrossEntropyLoss(weight=per_cls_weights).cuda(args.gpu)
elif args.loss_type == 'BS':
criterion = BalancedSoftmaxLoss(cls_num_list=cls_num_list_cuda).cuda(args.gpu)
elif args.loss_type == 'LDAM':
criterion = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30, weight=per_cls_weights).cuda(args.gpu)
else:
warnings.warn('Loss type is not listed')
return
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args, log_training,
weighted_train_loader=weighted_train_loader)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, args, log_testing)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
# tf_writer.add_scalar('acc/test_top1_best', best_acc1, epoch)
output_best = 'Best Prec@1: %.3f\n' % (best_acc1)
print(output_best)
log_testing.write(output_best + '\n')
log_testing.flush()
save_checkpoint(args, {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
}, is_best, epoch + 1)
end_time = time.time()
print("It took {} to execute the program".format(hms_string(end_time - start_time)))
log_testing.write("It took {} to execute the program".format(hms_string(end_time - start_time)) + '\n')
log_testing.flush()
def hms_string(sec_elapsed):
h = int(sec_elapsed / (60 * 60))
m = int((sec_elapsed % (60 * 60)) / 60)
s = sec_elapsed % 60.
return "{}:{:>02}:{:>05.2f}".format(h, m, s)
def train(train_loader, model, criterion, optimizer, epoch, args, log, tf_writer=None,
weighted_train_loader=None):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to train mode
model.train()
end = time.time()
if args.data_aug == 'CMO' and args.start_data_aug < epoch < (args.epochs - args.end_data_aug):
inverse_iter = iter(weighted_train_loader)
for i, (input, target) in enumerate(train_loader):
if args.data_aug == 'CMO' and args.start_data_aug < epoch < (args.epochs - args.end_data_aug):
try:
input2, target2 = next(inverse_iter)
except:
inverse_iter = iter(weighted_train_loader)
input2, target2 = next(inverse_iter)
input2 = input2[:input.size()[0]]
target2 = target2[:target.size()[0]]
input2 = input2.cuda(args.gpu, non_blocking=True)
target2 = target2.cuda(args.gpu, non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# Data augmentation
r = np.random.rand(1)
if args.data_aug == 'CMO' and args.start_data_aug < epoch < (args.epochs - args.end_data_aug) \
and r < args.mixup_prob:
# generate mixed sample
lam = np.random.beta(args.beta, args.beta)
bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
input[:, :, bbx1:bbx2, bby1:bby2] = input2[:, :, bbx1:bbx2, bby1:bby2]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
output = model(input)
loss = criterion(output, target) * lam + criterion(output, target2) * (1. - lam)
else:
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr'])) # TODO
print(output)
log.write(output + '\n')
log.flush()
# tf_writer.add_scalar('loss/train', losses.avg, epoch)
# tf_writer.add_scalar('acc/train_top1', top1.avg, epoch)
# tf_writer.add_scalar('acc/train_top5', top5.avg, epoch)
# tf_writer.add_scalar('lr', optimizer.param_groups[-1]['lr'], epoch)
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = int(W * cut_rat)
cut_h = int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def rand_bbox_withcenter(size, lam, cx, cy):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = int(W * cut_rat)
cut_h = int(H * cut_rat)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def validate(val_loader, model, criterion, args, log=None, tf_writer=None, flag='val'):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to evaluate mode
model.eval()
all_preds = []
all_targets = []
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
_, pred = torch.max(output, 1)
all_preds.extend(pred.cpu().numpy())
all_targets.extend(target.cpu().numpy())
if i % args.print_freq == 0:
output = ('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(output)
cf = confusion_matrix(all_targets, all_preds).astype(float)
cls_cnt = cf.sum(axis=1)
cls_hit = np.diag(cf)
cls_acc = cls_hit / cls_cnt
output = ('{flag} Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}'
.format(flag=flag, top1=top1, top5=top5, loss=losses))
out_cls_acc = '%s Class Accuracy: %s' % (
flag, (np.array2string(cls_acc, separator=',', formatter={'float_kind': lambda x: "%.3f" % x})))
print(output)
many_shot = train_cls_num_list > 100
medium_shot = (train_cls_num_list <= 100) & (train_cls_num_list > 20)
few_shot = train_cls_num_list <= 20
print("many avg, med avg, few avg", float(sum(cls_acc[many_shot]) * 100 / sum(many_shot)),
float(sum(cls_acc[medium_shot]) * 100 / sum(medium_shot)),
float(sum(cls_acc[few_shot]) * 100 / sum(few_shot)))
if log is not None:
log.write(output + '\n')
log.write(out_cls_acc + '\n')
log.flush()
# tf_writer.add_scalar('loss/test_'+ flag, losses.avg, epoch)
# tf_writer.add_scalar('acc/test_' + flag + '_top1', top1.avg, epoch)
# tf_writer.add_scalar('acc/test_' + flag + '_top5', top5.avg, epoch)
# tf_writer.add_scalars('acc/test_' + flag + '_cls_acc', {str(i):x for i, x in enumerate(cls_acc)}, epoch)
return top1.avg
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate"""
epoch = epoch + 1
if epoch <= 5:
lr = args.lr * epoch / 5
elif epoch > 160:
lr = args.lr * 0.01
elif epoch > 75:
lr = args.lr * 0.1
else:
lr = args.lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def paco_adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
warmup_epochs = 10
lr = args.lr
if epoch < warmup_epochs:
lr = lr / warmup_epochs * (epoch + 1)
elif args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * (epoch - warmup_epochs + 1) / (args.epochs - warmup_epochs + 1)))
else: # stepwise lr schedule
for milestone in args.lr_steps:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()