-
Notifications
You must be signed in to change notification settings - Fork 29
/
UPB.m
867 lines (758 loc) · 35.7 KB
/
UPB.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
%% UPB Generates an unextendible product basis
% This function may be called in several different ways:
%
% U = UPB(NAME) is a matrix containing as its columns the vectors in the
% unextendible product basis specified by the string NAME. NAME must be
% one of: 'GenShifts', 'Min4x4', 'Pyramid', 'QuadRes', 'Shifts',
% 'SixParam', or 'Tiles'. See the online documentation for descriptions
% of these different UPBs.
%
% [U,V,W,...] = UPB(NAME) is the same as above, except in this case, the
% unextendible product basis is obtained by tensoring the columns of U,
% V, W, ... together. That is, U, V, W, ... are the local vectors in the
% unextendible product basis.
%
% U = UPB(DIM) and [U,V,W,...] = UPB(DIM) are as above, except DIM is a
% vector containing the local dimensions of the requested UPB rather than
% the name of the UPB.
%
% U = UPB(DIM,VERBOSE) and [U,V,W,...] = UPB(DIM,VERBOSE) are as above,
% where VERBOSE is a flag (either 1 or 0, default 1) that indicates that
% a reference for the returned UPB will or will not be displayed.
%
% URL: http://www.qetlab.com/UPB
% author: Nathaniel Johnston ([email protected])
% package: QETLAB
% last updated: May 9, 2022
% URL: http://www.qetlab.com/UPB
function [u,varargout] = UPB(name,varargin)
show_name = false;
given_dims = false;
revp = -1; % by default, don't permute systems around after we're done constructing the UPB
if(isnumeric(name)) % user provided dimensions, not a name, so find an appropriate UPB
% set optional argument defaults: verbose=1
[verbose] = opt_args({ 1 },varargin{:});
given_dims = true;
np = length(name);
% pre-load various references
refs = {'K. Feng. Unextendible product bases and 1-factorization of complete graphs. Discrete Applied Mathematics, 154:942-949, 2006.', ...
'D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B.M. Terhal. Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379-410, 2003.', ...
'C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B.M. Terhal. Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385-5388, 1999.', ...
'T.B. Pedersen. Characteristics of unextendible product bases. Thesis, Aarhus Universitet, Datalogisk Institut, 2002.', ...
'N. Johnston. The minimum size of qubit unextendible product bases. In Proceedings of the 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). E-print: arXiv:1302.1604 [quant-ph], 2013.', ...
'The realm of common sense (if there is only a single party, the only UPBs are full bases of the space).', ...
'N. Alon and L. Lovasz. Unextendible product bases. J. Combinatorial Theory, Ser. A, 95:169-179, 2001.\nSee also: http://www.njohnston.ca/2013/03/how-to-construct-minimal-upbs/', ...
'J. Chen and N. Johnston. The minimum size of unextendible product bases in the bipartite case (and some multipartite cases). Comm. Math. Phys., 333(1):351-365, 2015.'};
[name,revp] = sort(name);
if(np == 1)
upbp{1} = eye(name);
name = '';
ref_ind = 6;
elseif(np == 2 && min(name) <= 2)
% In this case, there are no UPBs smaller than a basis of the
% whole space.
upbp{1} = repmat(eye(name(1)),1,name(2));
upbp{2} = repmat(eye(name(2)),1,name(1));
upbp{revp(1)} = Swap(repmat(eye(name(revp(1))),1,name(revp(2))).',[1,2],[name(revp(2)),name(revp(1))],1).';
ref_ind = 2;
name = '';
elseif(np == 2 && all(name == [3,3]))
name = 'Tiles';
ref_ind = 3;
show_name = true;
elseif(np == 2 && all(name == [4,4]))
name = 'Feng4x4';
ref_ind = 1;
elseif(np == 2 && all(name == name(1)) && mod(name(1),2) == 1 && isprime(2*name(1)-1))
varargin = {name(1)};
name = 'QuadRes';
ref_ind = 2;
show_name = true;
elseif(np == 3 && all(name == [2,2,2]))
name = 'Shifts';
ref_ind = 3;
show_name = true;
elseif(np == 3 && all(name == [2,2,3]))
name = 'Feng2x2x3';
ref_ind = 1;
elseif(np == 3 && all(name == [2,2,5]))
name = 'Feng2x2x5';
ref_ind = 1;
elseif(np == 4 && all(name == [2,2,2,2]))
name = 'Feng2x2x2x2';
ref_ind = 1;
elseif(np == 4 && all(name == [2,2,2,4]))
name = 'Feng2x2x2x4';
ref_ind = 1;
elseif(np == 5 && all(name == [2,2,2,2,5]))
name = 'Feng2x2x2x2x5';
ref_ind = 1;
elseif(np == 8 && all(name == [2,2,2,2,2,2,2,2]))
name = 'John2^8';
ref_ind = 5;
elseif(mod(np,4) == 0 && all(name == 2*ones(1,np)))
varargin = {np};
name = 'John2^4k';
ref_ind = 5;
elseif(mod(np,2) == 1 && all(name == 2*ones(1,np)))
varargin = {np};
name = 'GenShifts';
ref_ind = 2;
show_name = true;
elseif((mod(sum(name)-np,2) == 1 || sum(mod(name,2)==0) == 0) && sum(mod(name,2)==0) <= 1)
varargin = {name};
name = 'AlonLovasz';
ref_ind = 7;
elseif(name(end)-1 == sum(name(1:end-1)-1) && sum(name-1) >= 3 && mod(sum(name)-np,2) == 0)
varargin = {name};
name = 'CJBip';
ref_ind = 8;
elseif(np == 2 && all(name == [4,6]))
name = 'CJBip46';
ref_ind = 8;
elseif(np == 3 && name(1) == 2 && name(2) == 2 && mod(name(3),4) == 1)
varargin = {name(3)};
name = 'CJ4k1';
ref_ind = 8;
else
try
min_size = MinUPBSize(name,0);
catch err
if(strcmpi(err.identifier,'MinUPBSize:MinSizeUnknown'))
error('UPB:MinSizeUnknown','No minimal UPB is currently known in the specified dimensions.');
else
rethrow(err);
end
end
error('UPB:HardToConstruct',['Minimal UPBs are known to have size ',num2str(min_size),' in this case, but their construction is complicated and not implemented by this script.']);
end
end
if(strcmpi(name,'Shifts')) % GenShifts reduces to Shifts when there are 3 parties
name = 'GenShifts';
varargin = {3};
end
% the "Pyramid" UPB
if(strcmpi(name,'Pyramid'))
h = sqrt(1 + sqrt(5))/2;
for j = 4:-1:0 % pre-allocate
upbp{1}(:,j+1) = [cos(2*pi*j/5);sin(2*pi*j/5);h];
end
upbp{1} = 2*upbp{1}/sqrt(5+sqrt(5));
upbp{2} = upbp{1}(:,[1,3,5,2,4]);
% the "Tiles" UPB
elseif(strcmpi(name,'Tiles'))
upbp{1}(:,5) = ones(3,1)/sqrt(3); % pre-allocate
upbp{1}(:,1) = [1;0;0];
upbp{1}(:,2) = [1;-1;0]/sqrt(2);
upbp{1}(:,3) = [0;0;1];
upbp{1}(:,4) = [0;1;-1]/sqrt(2);
upbp{2}(:,5) = ones(3,1)/sqrt(3);
upbp{2}(:,1) = [1;-1;0]/sqrt(2);
upbp{2}(:,2) = [0;0;1];
upbp{2}(:,3) = [0;1;-1]/sqrt(2);
upbp{2}(:,4) = [1;0;0];
% the "GenTiles1" UPB
elseif(strcmpi(name,'GenTiles1'))
if(isempty(varargin))
error('UPB:InvalidArguments','When using NAME=GenTiles1, you must specify a second input argument that gives the local dimension of the desired UPB.')
elseif(mod(varargin{1},2) == 1)
error('UPB:InvalidArguments','When using NAME=GenTiles1, the second input argument DIM must be even.')
end
n = varargin{1};
I = eye(n);
w = exp(4i*pi/n);
ct = 1;
upbp{1}(:,n^2-2*n+1) = ones(n,1)/sqrt(n); % pre-allocate
upbp{2}(:,n^2-2*n+1) = ones(n,1)/sqrt(n); % pre-allocate
for m = 1:(n/2-1)
wMat = zeros(n,n);
for k = 0:n-1
for j = 0:(n/2-1)
wMat(mod(j+k,n)+1,k+1) = wMat(mod(j+k,n)+1,k+1) + w^(j*m);
end
end
for k = 0:n-1
upbp{1}(:,ct) = I(:,k+1);
upbp{2}(:,ct) = wMat(:,mod(k+1,n)+1)/sqrt(n/2);
upbp{1}(:,ct+1) = wMat(:,k+1)/sqrt(n/2);
upbp{2}(:,ct+1) = I(:,k+1);
ct = ct + 2;
end
end
% the "GenTiles2" UPB
elseif(strcmpi(name,'GenTiles2'))
if(isempty(varargin))
error('UPB:InvalidArguments','When using NAME=GenTiles2, you must specify a second input argument that gives the local dimensions of the desired UPB.')
elseif(varargin{2} <= 3 || varargin{1} <= 2 || varargin{2} < varargin{1})
error('UPB:InvalidArguments','When using NAME=GenTiles2, the local dimension M and N must satisfy N > 3, M >= 3, and N >= M.')
end
m = varargin{1};
n = varargin{2};
Im = eye(m);
In = eye(n);
w = exp(2i*pi/(n-2));
upbp{1}(:,m*n-2*m+1) = ones(m,1)/sqrt(m); % pre-allocate
upbp{2}(:,m*n-2*m+1) = ones(n,1)/sqrt(n); % pre-allocate
for j = 1:m
upbp{1}(:,j) = (Im(:,j) - Im(:,mod(j,m)+1))/sqrt(2);
upbp{2}(:,j) = In(:,j);
end
ct = m+1;
for j = 0:m-1
for k = 1:n-3
upbp{1}(:,ct) = Im(:,j+1);
upbp{2}(:,ct) = zeros(n,1);
for ell = 0:m-3
upbp{2}(mod(ell+j+1,m)+1,ct) = w^(ell*k);
end
for ell = m-2:n-3
upbp{2}(ell+3,ct) = w^(ell*k);
end
upbp{2}(:,ct) = upbp{2}(:,ct) / sqrt(n-2);
ct = ct + 1;
end
end
% the "Min4x4" UPB
elseif(strcmpi(name,'Min4x4'))
upbp{1}(:,8) = [0;0;1;0]; % pre-allocate
upbp{1}(:,1) = [1;-3;1;1]/sqrt(12);
upbp{1}(:,2) = [1;0;0;0];
upbp{1}(:,3) = [0;1;2;1]/sqrt(6);
upbp{1}(:,4) = [1;0;0;-1]/sqrt(2);
upbp{1}(:,5) = [0;1;0;0];
upbp{1}(:,6) = [3;1;-1;1]/sqrt(12);
upbp{1}(:,7) = [0;1;1;0]/sqrt(2);
upbp{2}(:,8) = [-1;1+sqrt(2);0;1]/sqrt(5+2*sqrt(2)); % pre-allocate
upbp{2}(:,1) = [0;1;-3-sqrt(2);-1-sqrt(2)]/sqrt(15+8*sqrt(2));
upbp{2}(:,2) = [1;0;0;0];
upbp{2}(:,3) = [1;0;sqrt(2)-1;1]/sqrt(5-2*sqrt(2));
upbp{2}(:,4) = [0;1;0;0];
upbp{2}(:,5) = [-1;1+sqrt(2);0;1]/sqrt(5+2*sqrt(2));
upbp{2}(:,6) = [0;0;1;0];
upbp{2}(:,7) = [1;1;1;-sqrt(2)]/sqrt(5);
% the "QuadRes" UPB
elseif(strcmpi(name,'QuadRes'))
if(isempty(varargin))
error('UPB:InvalidArguments','When using NAME=QuadRes, you must specify a second input argument that gives the dimension of the desired UPB.')
elseif(~isprime(2*varargin{1}-1))
error('UPB:InvalidArguments','When using NAME=QuadRes, the second input argument DIM must be such that 2*DIM-1 is prime.')
elseif(mod(varargin{1},2) == 0)
error('UPB:InvalidArguments','When using NAME=QuadRes, the second input argument DIM must be odd.')
end
p = 2*varargin{1}-1;
q = quad_residue(p);
s = setdiff(1:p-1,q);
sm = sum(exp(2i*pi*q/p));
N = max(-sm,1+sm);
% This UPB is obtained by choosing entries from the Fourier matrix
% carefully.
F = FourierMatrix(p);
F(1,:) = sqrt(N)*F(1,:);
upbp{1} = F([1,q+1],:);
upbp{2} = F([1,mod(s(1)*q,p)+1],:);
% normalize the output
upbp{1} = upbp{1}./repmat(sqrt(sum(abs(upbp{1}).^2,1)),varargin{1},1);
upbp{2} = upbp{2}./repmat(sqrt(sum(abs(upbp{2}).^2,1)),varargin{1},1);
% the "SixParam" UPB (i.e., the one from Section IV.A of DMSST03)
elseif(strcmpi(name,'SixParam'))
if(isempty(varargin) || length(varargin{1}) ~= 6)
error('UPB:InvalidArguments','When using NAME=SixParam, you must specify a vector containing the six parameters [gammaA,thetaA,phiA,gammaB,thetaB,phiB].')
elseif(any(abs(sin(varargin{1}([1,2,4,5]))) < 10*eps) || any(abs(cos(varargin{1}([1,2,4,5]))) < 10*eps))
error('UPB:InvalidArguments','When using NAME=SixParam, none of the gammaA, thetaA, gammaB, and thetaB parameters can be a multiple of pi/2.')
end
arg_cell = num2cell(varargin{1});
[gammaA,thetaA,phiA,gammaB,thetaB,phiB] = arg_cell{:}; % give more memorable names to parameters
NA = sqrt(cos(gammaA)^2 + sin(gammaA)^2 * cos(thetaA)^2);
NB = sqrt(cos(gammaB)^2 + sin(gammaB)^2 * cos(thetaB)^2);
upbp{1}(:,5) = [0;sin(gammaA)*cos(thetaA)*exp(1i*phiA);cos(gammaA)]/NA; % pre-allocate
upbp{1}(:,1) = [1;0;0];
upbp{1}(:,2) = [0;1;0];
upbp{1}(:,3) = [cos(thetaA);0;sin(thetaA)];
upbp{1}(:,4) = [sin(gammaA)*sin(thetaA);cos(gammaA)*exp(1i*phiA);-sin(gammaA)*cos(thetaA)];
upbp{2}(:,5) = [0;sin(gammaB)*cos(thetaB)*exp(1i*phiB);cos(gammaB)]/NB;
upbp{2}(:,1) = [0;1;0];
upbp{2}(:,2) = [sin(gammaB)*sin(thetaB);cos(gammaB)*exp(1i*phiB);-sin(gammaB)*cos(thetaB)];
upbp{2}(:,3) = [1;0;0];
upbp{2}(:,4) = [cos(thetaB);0;sin(thetaB)];
% the "GenShifts" UPB
elseif(strcmpi(name,'GenShifts'))
if(isempty(varargin))
error('UPB:InvalidArguments','When using NAME=GenShifts, you must specify a second input argument that gives the number of parties in the desired UPB.')
elseif(mod(varargin{1},2) == 0)
error('UPB:InvalidArguments','When using NAME=GenShifts, the second input argument P must be odd.')
end
k = (varargin{1}+1)/2;
upbp{1} = [cos((0:(1/k):(2-1/k))*pi/2);sin((0:(1/k):(2-1/k))*pi/2)];
upbp{1} = upbp{1}(:,[1,k+1:-1:2,k+2:end]);
for j = varargin{1}-1:-1:1 % pre-allocate memory
upbp{j+1} = upbp{1}(:,[1,circshift(2:(2*k),[0,j])]);
end
% the "Feng2x2x2x2" UPB
elseif(strcmpi(name,'Feng2x2x2x2'))
b1 = eye(2);
b2 = [1 1;1 -1]/sqrt(2);
b3 = [cos(pi/3) sin(pi/3);-sin(pi/3) cos(pi/3)];
upbp{1} = [b1(:,1),b1(:,2),b1(:,1),b2(:,1),b2(:,2),b2(:,1)];
upbp{2} = [b1(:,1),b2(:,1),b1(:,2),b1(:,2),b2(:,2),b1(:,1)];
upbp{3} = [b1(:,1),b2(:,1),b3(:,1),b2(:,2),b3(:,2),b1(:,2)];
upbp{4} = [b1(:,1),b2(:,1),b3(:,1),b3(:,2),b1(:,2),b2(:,2)];
% the "John2^8" UPB
elseif(strcmpi(name,'John2^8'))
b1 = eye(2);
b2 = [1 1;1 -1]/sqrt(2);
b3 = [cos(pi/3) sin(pi/3);-sin(pi/3) cos(pi/3)];
b4 = [cos(pi/5) sin(pi/5);-sin(pi/5) cos(pi/5)];
b5 = [cos(pi/7) sin(pi/7);-sin(pi/7) cos(pi/7)];
upbp{1} = [b1(:,1),b2(:,1),b2(:,2),b1(:,2),b3(:,1),b4(:,1),b4(:,1),b3(:,1),b1(:,2),b3(:,2),b4(:,2)];
upbp{2} = [b1(:,1),b1(:,2),b2(:,1),b3(:,1),b4(:,1),b4(:,1),b4(:,2),b4(:,2),b3(:,1),b2(:,2),b3(:,2)];
upbp{3} = [b1(:,1),b2(:,1),b3(:,1),b3(:,2),b1(:,2),b3(:,2),b1(:,2),b4(:,1),b3(:,1),b2(:,2),b4(:,2)];
upbp{4} = [b1(:,1),b2(:,1),b3(:,1),b3(:,1),b3(:,2),b4(:,1),b3(:,2),b2(:,2),b4(:,1),b4(:,2),b1(:,2)];
upbp{5} = [b1(:,1),b2(:,1),b1(:,2),b3(:,1),b4(:,1),b2(:,2),b5(:,1),b3(:,2),b3(:,1),b5(:,2),b4(:,2)];
upbp{6} = [b1(:,1),b2(:,1),b3(:,1),b2(:,2),b4(:,1),b4(:,2),b5(:,1),b5(:,2),b2(:,2),b1(:,2),b3(:,2)];
upbp{7} = [b1(:,1),b2(:,1),b3(:,1),b4(:,1),b2(:,2),b4(:,2),b2(:,2),b1(:,2),b3(:,2),b5(:,1),b5(:,2)];
upbp{8} = [b1(:,1),b2(:,1),b3(:,1),b4(:,1),b5(:,1),b1(:,2),b5(:,1),b3(:,2),b5(:,2),b4(:,2),b2(:,2)];
% the "John2^4k" UPB
elseif(strcmpi(name,'John2^4k'))
if(isempty(varargin))
error('UPB:InvalidArguments','When using NAME=John2^4k, you must specify a second input argument that gives the number of parties in the desired UPB.')
elseif(mod(varargin{1},4) ~= 0 || varargin{1} <= 7)
error('UPB:InvalidArguments','When using NAME=John2^4k, the second input argument P must equal 0 (mod 4) and must be at least 8.')
end
% Construct varargin{1}/2+2 distinct orthonormal bases of C^2.
for j = (varargin{1}/2+2):-1:1 % pre-allocate
jb = 2*pi/(2*j-1);
b(:,:,j) = [cos(jb) sin(jb);-sin(jb) cos(jb)];
end
% the first 3 parties are special, so we do them separately
upbp{1} = [reshape(repmat(reshape(b(:,1,1:varargin{1}/4+1),2,varargin{1}/4+1),2,1),2,varargin{1}/2+2), reshape(repmat(reshape(b(:,2,1:varargin{1}/4+1),2,varargin{1}/4+1),2,1),2,varargin{1}/2+2)];
upbp{2} = [upbp{1}(:,1:varargin{1}/2+2),circshift(upbp{1}(:,varargin{1}/2+3:end),[0,2])];
upbp{3} = [upbp{1}(:,1:varargin{1}/2+2),circshift(upbp{1}(:,varargin{1}/2+3:end),[0,4])];
% now do the next 2k-4 parties
if(varargin{1} > 8)
upbp{4} = [reshape(b(:,1,:),2,varargin{1}/2+2), circshift(reshape(b(:,2,:),2,varargin{1}/2+2),[0,6])];
upbp{5} = upbp{4}(:,[1:varargin{1}/2+2,reshape(fliplr(reshape(varargin{1}/2+3:varargin{1}+4,2,varargin{1}/4+1).').',1,varargin{1}/2+2)]);
for j = 3:(varargin{1}/4-1)
upbp{2*j} = [upbp{4}(:,1:varargin{1}/2+2),circshift(upbp{4}(:,varargin{1}/2+3:end),[0,2*(j-1)])];
upbp{2*j+1} = [upbp{5}(:,1:varargin{1}/2+2),circshift(upbp{5}(:,varargin{1}/2+3:end),[0,2*(j-1)])];
end
end
% Finally, do the last 2k+1 parties, which arise from finding a
% 1-factorization of the complete graph.
fac = one_factorization(varargin{1}/2+2);
resb = reshape(b,2,varargin{1}+4);
for j = 1:(varargin{1}/2+1)
upbp{varargin{1}/2+j-1} = resb(:,[fac(j,:),varargin{1}/2+2+fac(j,:)]);
end
% the UPB from Theorem 3 of reference [8]
elseif(strcmpi(name,'CJ4k1'))
% Construct (varargin{1}+1)/2+1 distinct orthonormal bases of C^2.
for j = ((varargin{1}+1)/2+1):-1:1 % pre-allocate
jb = 2*pi/(2*j-1);
b(:,:,j) = [cos(jb) sin(jb);-sin(jb) cos(jb)];
end
% the 2-dimensional parties are the same as in the Feng4m2 UPB
upbp{1} = repmat(reshape(b(:,:,1:((varargin{1}+3)/4)),2,(varargin{1}+1)/2+1),1,2);
u_ind = reshape((varargin{1}+1)/2+2:varargin{1}+3,2,(varargin{1}+3)/4);
upbp{1}(:,(varargin{1}+1)/2+2:varargin{1}+3) = upbp{1}(:,reshape(u_ind([2,1],:),1,(varargin{1}+1)/2+1));
b = reshape(b,2,varargin{1}+3);
upbp{3} = CJ_Lemma6((varargin{1}-1)/4);
upbp{2} = b(:,circshift(1:varargin{1}+3,[0,1]));
upbp{2}(:,[(varargin{1}+3)/2,varargin{1}+3]) = upbp{2}(:,[varargin{1}+3,(varargin{1}+3)/2]);
% the UPB from Theorem 1 of reference [8]
elseif(strcmpi(name,'CJBip'))
maxD = varargin{1}(end);
U = HollowUnitary(maxD);
upbp{np} = [eye(maxD),U];
if(maxD >= 20 && ~IsTotallyNonsingular(U,2:maxD-2))
error('UPB:HardToConstruct',['Minimal UPBs are known to have size ',num2str(maxD*2),' in this case, but their construction is complicated and not implemented by this script.']);
end
prevdims = 0;
for j = 1:np-1
upbp{j} = CJ_Lemma5(maxD,varargin{1}(j)-1,1+prevdims);
prevdims = prevdims + varargin{1}(j)-1;
end
% another UPB from Theorem 1 of reference [8]
elseif(strcmpi(name,'CJBip46'))
u = 1.64451358502312496885542269243;
upbp{1} = normalize_cols([3 3 3 1 1 -1 -1 2 -2 0;2 1 1 2 3 -2 0 0 -2 -1;2 1 1 1 1 5 -3 -4 2 1;2 2 3 2 2 0 2 1 3 0]);
upbp{2} = eye(6);
upbp{2} = [upbp{2}(:,1:5),normalize_cols([0 0 (u-2)/(1-u) 1 (u-1)/(u-2);u*(u-2)/(2*u-3) 0 0 (3-2*u)/(u-2) 1;1 -1-u 0 0 1/(1+u);1 1 -u 0 0;0 u-1 1 1/(1-u) 0;u 1 1 1 1])];
% the "Feng2x2x3" UPB
elseif(strcmpi(name,'Feng2x2x3'))
b1 = eye(2);
b2 = [1 1;1 -1]/sqrt(2);
upbp{3} = normalize_cols([1,1,2,1,0,0;0,0,-3,1,1,1;0,1,-1,-1,-3,0]);
upbp{1} = [b1(:,1),b1(:,2),b1(:,1),b2(:,1),b2(:,2),b2(:,1)];
upbp{2} = [b1(:,1),b2(:,1),b1(:,2),b1(:,2),b2(:,2),b1(:,1)];
% the "Feng2x2x5" UPB
elseif(strcmpi(name,'Feng2x2x5'))
w = exp(pi*2i/3);
b1 = eye(2);
b2 = [1 1;1 -1]/sqrt(2);
b3 = [cos(pi/3) sin(pi/3);-sin(pi/3) cos(pi/3)];
b4 = [cos(pi/5) sin(pi/5);-sin(pi/5) cos(pi/5)];
upbp{3} = normalize_cols([1,conj(w),w,0,0,0,1,0;0,w,conj(w),1,0,1,0,0;0,conj(w),0,0,0,1,w,1;0,0,w,0,1,1,conj(w),0;0,1,1,0,0,1,1,0]);
upbp{1} = [b2(:,2),b2(:,1),b1(:,2),b1(:,1),b1(:,1),b1(:,2),b2(:,1),b2(:,2)];
upbp{2} = [b4(:,2),b1(:,2),b4(:,1),b1(:,1),b3(:,1),b2(:,1),b3(:,2),b2(:,2)];
% the "Feng4m2" UPB of Theorem 3.2 from the Feng paper
% I don't know how to compute a 1-factorization of the complement graph
% in this UPB's construction yet. The commented section below shows the
% part of the construction that I *do* know how to implement.
% elseif(strcmpi(name,'Feng4m2'))
% if(isempty(varargin))
% error('UPB:InvalidArguments','When using NAME=Feng4m2, you must specify a second input argument that gives the number of parties in the desired UPB.')
% elseif(mod(varargin{1},4) ~= 2)
% error('UPB:InvalidArguments','When using NAME=Feng4m2, the second input argument P must equal 2 (mod 4).')
% end
%
% % Construct varargin{1}/2+1 distinct orthonormal bases of C^2.
% for j = (varargin{1}/2+1):-1:1 % pre-allocate
% jb = 2*pi/(2*j-1);
% b(:,:,j) = [cos(jb) sin(jb);-sin(jb) cos(jb)];
% end
%
% upbp{1} = repmat(reshape(b(:,:,1:((varargin{1}+2)/4)),2,varargin{1}/2+1),1,2); % these are the a_j's in the proof of the theorem
% u_ind = reshape(varargin{1}/2+2:varargin{1}+2,2,(varargin{1}+2)/4);% we need to move the columns of upbp{1} around a little bit first
% upbp{1}(:,varargin{1}/2+2:varargin{1}+2) = upbp{1}(:,reshape(u_ind([2,1],:),1,varargin{1}/2+1));
% b = reshape(b,2,varargin{1}+2); % these are the vectors that will be used in all subsystems except the first
% the "Feng4x4" UPB (Theorem 3.3(4) of Feng paper)
elseif(strcmpi(name,'Feng4x4'))
upbp{1}(:,8) = [1;-1;1;0]/sqrt(3); % pre-allocate
upbp{1}(:,1:4) = eye(4);
upbp{1}(:,5) = [0;1;1;1]/sqrt(3);
upbp{1}(:,6) = [1;0;-1;1]/sqrt(3);
upbp{1}(:,7) = [1;1;0;-1]/sqrt(3);
upbp{2}(:,8) = [0;1;1;1]/sqrt(3);
upbp{2}(:,[1,7,6,4]) = eye(4);
upbp{2}(:,5) = [1;-1;1;0]/sqrt(3);
upbp{2}(:,2) = [1;0;-1;1]/sqrt(3);
upbp{2}(:,3) = [1;1;0;-1]/sqrt(3);
% the "Feng2x2x2x4" UPB (Theorem 3.3(3) of Feng paper)
elseif(strcmpi(name,'Feng2x2x2x4'))
% need four different bases of C^2
b1 = eye(2);
b2 = [1 1;1 -1]/sqrt(2);
b3 = [cos(pi/3) sin(pi/3);-sin(pi/3) cos(pi/3)];
b4 = [cos(pi/5) sin(pi/5);-sin(pi/5) cos(pi/5)];
upbp{4}(:,8) = [1;-1;1;0]/sqrt(3); % pre-allocate
upbp{4}(:,1:4) = eye(4);
upbp{4}(:,5) = [0;1;1;1]/sqrt(3);
upbp{4}(:,6) = [1;0;-1;1]/sqrt(3);
upbp{4}(:,7) = [1;1;0;-1]/sqrt(3);
upbp{1} = [b1 b2 b3 b4];
upbp{3} = [b1 b2 b3 b4];
upbp{2} = [b1 b2 b3 b4];
upbp{2} = upbp{2}(:,[1,3,7,5,4,2,6,8]);
upbp{3} = upbp{3}(:,[1,5,7,3,4,8,6,2]);
upbp{1} = upbp{1}(:,[1,3,7,5,8,6,2,4]);
% the "Feng2x2x2x2x5" UPB (Theorem 3.3(5) of Feng paper)
elseif(strcmpi(name,'Feng2x2x2x2x5'))
w = exp(pi*2i/3);
upbp{5}(:,10) = [1;conj(w);w;1;0]/2; % pre-allocate
upbp{5}(:,1:5) = eye(5);
upbp{5}(:,6) = [0;1;1;1;1]/2;
upbp{5}(:,7) = [1;0;1;w;conj(w)]/2;
upbp{5}(:,8) = [1;1;0;conj(w);w]/2;
upbp{5}(:,9) = [1;w;conj(w);0;1]/2;
% need five different bases of C^2
upbp{1} = [eye(2), [1 1;1 -1]/sqrt(2), [cos(pi/3) sin(pi/3);-sin(pi/3) cos(pi/3)], [cos(pi/5) sin(pi/5);-sin(pi/5) cos(pi/5)], [cos(pi/7) sin(pi/7);-sin(pi/7) cos(pi/7)]];
upbp{4} = upbp{1};
upbp{3} = upbp{1};
upbp{2} = upbp{1};
upbp{2} = upbp{2}(:,[1,3,5,7,9,10,2,4,6,8]);
upbp{3} = upbp{3}(:,[1,3,5,7,9,8,10,2,4,6]);
upbp{4} = upbp{4}(:,[1,3,5,7,9,6,8,10,2,4]);
upbp{1} = upbp{1}(:,[1,3,5,7,9,4,6,8,10,2]);
elseif(strcmpi(name,'AlonLovasz'))
dim = varargin{1};
min_size = sum(dim) - np + 1;
os = 0;
if(mod(dim(1),2) == 0)
upbp{1} = AL_even(dim(1),min_size);
else
upbp{1} = AL_odd(dim(1),min_size,os);
os = os + (dim(1)-1)/2;
end
if(length(upbp{1}) == 1 && upbp{1} == -1)
error('UPB:HardToConstruct',['Minimal UPBs are known to have size ',num2str(min_size),' in this case, but their construction is complicated and not implemented by this script.']);
end
for j = np:-1:2
if(mod(dim(j),2) == 0)
upbp{j} = AL_even(dim(j),min_size);
else
upbp{j} = AL_odd(dim(j),min_size,os);
os = os + (dim(j)-1)/2;
end
if(length(upbp{j}) == 1 && upbp{j} == -1)
error('UPB:HardToConstruct',['Minimal UPBs are known to have size ',num2str(min_size),' in this case, but their construction is complicated and not implemented by this script.']);
end
end
end
if(length(revp) == 1)
revp = 1:length(upbp);
end
revp = perm_inv(revp);
u = upbp{revp(1)};
varargout = upbp(revp(2:end));
% If the user just requested one output argument, tensor local vectors
% together.
if(nargout <= 1 && length(varargout) >= 1)
num_vec = size(u,2);
% Do a clever column-by-column kronecker product that avoids having to
% loop over every vector within each party. Note that this method
% relies on not using sparse matrices.
u = reshape(u,1,size(u,1),num_vec);
for k = 1:length(varargout)-1
v = reshape(varargout{k},size(varargout{k},1),1,num_vec);
u = reshape(bsxfun(@times,v,u),1,size(u,2)*size(v,1),num_vec);
end % we split the last iteration outside of the loop to reduce the number of required reshapes by 1
v = reshape(varargout{end},size(varargout{end},1),1,num_vec);
u = reshape(bsxfun(@times,u,v), size(u,2)*size(varargout{end},1),num_vec);
end
if(given_dims)
if(show_name)
opt_disp(['Generated the ',num2str(length(upbp{1})),'-state ''',name,''' UPB from:\n',refs{ref_ind},'\n'],verbose);
else
opt_disp(['Generated a minimal ',num2str(length(upbp{1})),'-state UPB from:\n',refs{ref_ind},'\n'],verbose);
end
end
end
% Computes all quadratic residues mod p (needed for the QuadRes UPB)
function q = quad_residue(p)
q = unique(mod((1:floor(p/2)).^2,p));
end
% Computes the vectors in an Alon-Lovasz UPB in odd dimensions.
function W = AL_odd(r,c,os)
its = 0;
lin_indep = false;
while ~lin_indep
W = randn(r,c);
for j = 2:c
ind = intersect(1:j-1,mod([(j-(r-1)/2-os):(j-1-os),(j+1+os):(j+(r-1)/2+os)]-1,c)+1);
tmp = null(W(:,ind)');
W(:,j) = tmp*randn(size(tmp,2),1);
end
W = normalize_cols(W);
lin_indep = IsTotallyNonsingular(W,r);
its = its + 1;
if(its >= 2 && ~lin_indep)
W = -1;
return
end
end
end
% Computes the vectors in an Alon-Lovasz UPB in one even dimension.
function W = AL_even(r,c)
its = 0;
lin_indep = false;
while ~lin_indep
r2 = c - r + 1;
W = randn(r,c);
for j = 2:c
ind = setdiff(1:c,mod((j-(r2-1)/2:j+(r2-1)/2)-1,c)+1);
tmp = null(W(:,ind)');
W(:,j) = tmp*randn(size(tmp,2),1);
end
W = normalize_cols(W);
lin_indep = IsTotallyNonsingular(W,r);
its = its + 1;
if(its >= 2 && ~lin_indep)
W = -1;
return
end
end
end
%% CJ_LEMMA5 Construct a matrix W described by Lemma 5 of [CJ]
% This function has three required argument:
% Q: the positive integer q described by the lemma
% R: the positive integer r described by the lemma
% S: the positive integer s described by the lemma
%
% W = CJ_Lemma5(Q,R,S) is a (R+1)-by-2Q matrix with columns of unit
% length that satisfy the orthogonality condition (a) and the
% nonsingularity condition (b) of Lemma 5.
%
% This function has one optional argument:
% NICE (default 0): a non-negative integer that specifies how "nice"
% the entries of W should be
%
% W = CJ_Lemma5(Q,R,S,NICE) is the same as before if NICE = 0. If NICE is
% positive integer, then W will be a symbolic matrix (rather than a
% numeric matrix) whose entries are integers. In this case, the columns
% of W are no longer scaled to have unit length, but rather are scaled to
% make the entries the smallest integers possible. Lower values of NICE
% lead to smaller entries, but in general take longer to compute (and may
% not be able to be computed at all, if NICE is too small).
%
% URL: http://www.njohnston.ca/publications/minimum-upbs/code/
%
% References:
% [CJ] J. Chen and N. Johnston. The Minimum Size of Unextendible Product
% Bases in the Bipartite Case (and Some Multipartite Cases).
% Preprint, 2012.
% requires: IsTotallyNonsingular.m, normalize_cols.m
% author: Nathaniel Johnston ([email protected])
% version: 1.00
% last updated: December 19, 2012
function W = CJ_Lemma5(q,r,s,varargin)
if(q < r + s)
error('CJ_Lemma5:InvalidArgs','The arguments must satisfy q >= r + s.');
end
if(nargin == 3)
nice = 0;
else
nice = varargin{1};
end
its = 0;
satisfy_cond_b = false;
while ~satisfy_cond_b
% Construct a matrix W that satisfies condition (a) of Lemma 4.
if(nice == 0)
W = randn(r+1,2*q);
W(:,q+1:(2*q)) = normalize_cols(W(:,q+1:(2*q)));
else
W = sym((1-2*floor(2*rand(r+1,2*q))).*(1+floor(nice*rand(r+1,2*q))));
end
lin_depen = 0;
% Now generate the remaining conditions according to condition (b).
for j = 0:q-1
tmp_null = null(W(:,q+1+mod(j+(s:s+r-1),q)).');
if(size(tmp_null,2) > 1)
% Uh-oh, two of the randomly-generated columns are linearly
% dependent: try again!
lin_depen = 1;
break;
end
W(:,j+1) = tmp_null;
% Get rid of the denominators in the new column, if the user wanted
% all integers.
if(nice > 0)
[~,cd] = numden(W(1,j+1));
for k=2:size(W,1)
[~,den] = numden(W(k,j+1));
cd = lcm(cd,den);
end
W(:,j+1) = cd*W(:,j+1);
end
end
% With probability 1, the matrix W also satisfies condition (b) of
% Lemma 4. Nevertheless, we should make sure that this is the case, and
% if it isn't, try again!
if(lin_depen == 0)
W = fliplr(W);
satisfy_cond_b = IsTotallyNonsingular(double(W),r+1);
end
its = its + 1;
if(its == 10 && nice ~= 0 && ~satisfy_cond_b)
warning('CJ_Lemma5:LinearDependence', 'Tried (and failed) 10 times to find a matrix satisfying all imposed conditions. You may have better luck if you increase (or omit) the NICE argument.');
end
end
end
%% CJ_LEMMA6 Construct a matrix W described by Lemma 6 of [CJ]
% This function has one required argument:
% K: the positive integer k described by the lemma
%
% W = CJ_Lemma6(K) is a (4K+1)-by-(4K+4) matrix with columns of unit
% length that satisfy the orthogonality conditions (i), (ii) and (iii)
% and the nonsingularity condition (iv) of Lemma 6.
%
% This function has one optional argument:
% NICE (default 0): a non-negative integer that specifies how "nice"
% the entries of W should be
%
% W = CJ_Lemma6(K,NICE) is the same as before if NICE = 0. If NICE is a
% positive integer, then W will be a symbolic matrix (rather than a
% numeric matrix) whose entries are integers. In this case, the columns
% of W are no longer scaled to have unit length, but rather are scaled to
% make the entries the smallest integers possible. Lower values of NICE
% lead to smaller entries, but in general take longer to compute (and may
% not be able to be computed at all, if NICE is too small).
%
% URL: http://www.njohnston.ca/publications/minimum-upbs/code/
%
% References:
% [CJ] J. Chen and N. Johnston. The Minimum Size of Unextendible Product
% Bases in the Bipartite Case (and Some Multipartite Cases).
% Preprint, 2012.
% requires: IsTotallyNonsingular.m, normalize_cols.m
% author: Nathaniel Johnston ([email protected])
% version: 1.00
% last updated: December 21, 2012
function W = CJ_Lemma6(k,varargin)
d = 4*k + 1;
if(nargin == 1)
nice = 0;
else
nice = varargin{1};
end
its = 0;
satisfy_cond_b = false;
while ~satisfy_cond_b
% Construct a matrix W that satisfies conditions (i), (ii) and (iii) of
% Lemma 6.
if(nice == 0)
W = randn(d,d+3);
W(:,1:2) = normalize_cols(W(:,1:2));
else
W = sym((1-2*floor(2*rand(d,d+3))).*(1+floor(nice*rand(d,d+3))));
end
for j = 2:d+2
hlf = (d+3)/2;
if(j < hlf)
ind = setdiff(0:j-2,mod(j+1,hlf))+1;
else
ind = setdiff(0:j-1,[j-hlf,hlf+mod(j-1,hlf),hlf+mod(j+1,hlf)])+1;
end
tmp = null(W(:,ind).');
W(:,j+1) = tmp(:,1);
% Get rid of the denominators in the new column, if the user wanted
% all integers.
if(nice > 0)
[~,cd] = numden(W(1,j+1));
for k=2:size(W,1)
[~,den] = numden(W(k,j+1));
cd = lcm(cd,den);
end
W(:,j+1) = cd*W(:,j+1);
end
end
% With probability 1, the matrix W also satisfies condition (iv) of
% Lemma 6. Nevertheless, we should make sure that this is the case, and
% if it isn't, try again!
satisfy_cond_b = IsTotallyNonsingular(double(W),d);
its = its + 1;
if(its == 10 && nice ~= 0 && ~satisfy_cond_b)
warning('CJ_Lemma6:LinearDependence', 'Tried (and failed) 10 times to find a matrix satisfying all imposed conditions. You may have better luck if you increase (or omit) the NICE argument.');
end
end
end
%% HOLLOWUNITARY Produces a hollow unitary matrix
% This function has one required argument:
% DIM: a positive integer not equal to 1 or 3
%
% U = HollowUnitary(DIM) is a unitary matrix with all of its diagonal
% entries equal to 0 and all of its off-diagonal entries non-zero. Such a
% matrix exists if and only if DIM = 2 or DIM >= 4.
%
% URL: http://www.njohnston.ca/publications/minimum-upbs/code/
%
% References:
% [CJ] J. Chen and N. Johnston. The Minimum Size of Unextendible Product
% Bases in the Bipartite Case (and Some Multipartite Cases).
% Preprint, 2012.
% requires: FourierMatrix.m
% author: Nathaniel Johnston ([email protected])
% version: 1.00
% last updated: December 19, 2012
function U = HollowUnitary(dim)
if(dim == 3 || dim <= 1)
error('HollowUnitary:InvalidDim','Hollow unitaries only exist when DIM = 2 or DIM >= 4.');
end
w2 = exp(2i*pi/(dim-2));
F = FourierMatrix(dim-1);
U2 = zeros(dim-1);
for j = 1:dim-2
U2 = U2 + w2^j*F(:,j+1)*F(:,j+1)';
end
U = [0,ones(1,dim-1)/sqrt(dim-1);ones(dim-1,1)/sqrt(dim-1),U2];
end