forked from EvilPort2/emojify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognize.py
70 lines (61 loc) · 2.16 KB
/
recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import cv2
import numpy as np
import dlib
from imutils import face_utils
from imutils.face_utils import FaceAligner
from keras.models import load_model
from preprocess_img import create_mask
CNN_MODEL = 'cnn_model_keras1.h5'
SHAPE_PREDICTOR_68 = "shape_predictor_68_face_landmarks.dat"
cnn_model = load_model(CNN_MODEL)
shape_predictor_68 = dlib.shape_predictor(SHAPE_PREDICTOR_68)
detector = dlib.get_frontal_face_detector()
cam = cv2.VideoCapture(1)
if cam.read()[0]==False:
cam = cv2.VideoCapture(0)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
fa = FaceAligner(shape_predictor_68, desiredFaceWidth=100)
def get_image_size():
img = cv2.imread('dataset/0/100.jpg', 0)
return img.shape
image_x, image_y = get_image_size()
def keras_process_image(img):
img = cv2.resize(img, (image_x, image_y))
img = np.array(img, dtype=np.float32)
img = np.reshape(img, (1, image_x, image_y, 1))
return img
def keras_predict(model, image):
processed = keras_process_image(image)
pred = model.predict(processed)
print(pred[0]*100)
pred_probab = pred[0]
pred_class = list(pred_probab).index(max(pred_probab))
return max(pred_probab), pred_class
def recognize():
disp_probab, disp_class = 0, 0
while True:
img = cam.read()[1]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = detector(gray)
if len(faces) > 0:
face = faces[0]
shape_68 = shape_predictor_68(img, face)
shape = face_utils.shape_to_np(shape_68)
mask = create_mask(shape, img)
masked = cv2.bitwise_and(gray, mask)
(x, y, w, h) = face_utils.rect_to_bb(face)
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 255, 0), 2)
faceAligned = fa.align(masked, gray, face)
cv2.imshow('faceAligned', faceAligned)
pred_probab, pred_class = keras_predict(cnn_model, faceAligned)
if pred_probab > 0.5:
disp_probab = pred_probab
disp_class = pred_class
cv2.putText(img, str(disp_probab), (50, 50), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (0, 0, 0))
cv2.putText(img, str(disp_class), (50, 100), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (0, 0, 0))
cv2.imshow('img', img)
if cv2.waitKey(1) == ord('q'):
break
keras_predict(cnn_model, np.zeros((150, 150, 1), dtype=np.uint8))
recognize()