-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path11.py
126 lines (105 loc) · 6.01 KB
/
11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
'''
In the 20x20 grid below, four numbers along a diagonal line have been marked
in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 [26] 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 [63] 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 [78] 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 [14] 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 x 63 x 78 x 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction
(up, down, left, right, or diagonally) in the 20x20 grid?
'''
from clock import Timer
BIG_SEQUENCE = (
('08', '02', '22', '97', '38', '15', '00', '40', '00', '75', '04', '05', '07', '78', '52', '12', '50', '77', '91', '08'),
('49', '49', '99', '40', '17', '81', '18', '57', '60', '87', '17', '40', '98', '43', '69', '48', '04', '56', '62', '00'),
('81', '49', '31', '73', '55', '79', '14', '29', '93', '71', '40', '67', '53', '88', '30', '03', '49', '13', '36', '65'),
('52', '70', '95', '23', '04', '60', '11', '42', '69', '24', '68', '56', '01', '32', '56', '71', '37', '02', '36', '91'),
('22', '31', '16', '71', '51', '67', '63', '89', '41', '92', '36', '54', '22', '40', '40', '28', '66', '33', '13', '80'),
('24', '47', '32', '60', '99', '03', '45', '02', '44', '75', '33', '53', '78', '36', '84', '20', '35', '17', '12', '50'),
('32', '98', '81', '28', '64', '23', '67', '10', '26', '38', '40', '67', '59', '54', '70', '66', '18', '38', '64', '70'),
('67', '26', '20', '68', '02', '62', '12', '20', '95', '63', '94', '39', '63', '08', '40', '91', '66', '49', '94', '21'),
('24', '55', '58', '05', '66', '73', '99', '26', '97', '17', '78', '78', '96', '83', '14', '88', '34', '89', '63', '72'),
('21', '36', '23', '09', '75', '00', '76', '44', '20', '45', '35', '14', '00', '61', '33', '97', '34', '31', '33', '95'),
('78', '17', '53', '28', '22', '75', '31', '67', '15', '94', '03', '80', '04', '62', '16', '14', '09', '53', '56', '92'),
('16', '39', '05', '42', '96', '35', '31', '47', '55', '58', '88', '24', '00', '17', '54', '24', '36', '29', '85', '57'),
('86', '56', '00', '48', '35', '71', '89', '07', '05', '44', '44', '37', '44', '60', '21', '58', '51', '54', '17', '58'),
('19', '80', '81', '68', '05', '94', '47', '69', '28', '73', '92', '13', '86', '52', '17', '77', '04', '89', '55', '40'),
('04', '52', '08', '83', '97', '35', '99', '16', '07', '97', '57', '32', '16', '26', '26', '79', '33', '27', '98', '66'),
('88', '36', '68', '87', '57', '62', '20', '72', '03', '46', '33', '67', '46', '55', '12', '32', '63', '93', '53', '69'),
('04', '42', '16', '73', '38', '25', '39', '11', '24', '94', '72', '18', '08', '46', '29', '32', '40', '62', '76', '36'),
('20', '69', '36', '41', '72', '30', '23', '88', '34', '62', '99', '69', '82', '67', '59', '85', '74', '04', '36', '16'),
('20', '73', '35', '29', '78', '31', '90', '01', '74', '31', '49', '71', '48', '86', '81', '16', '23', '57', '05', '54'),
('01', '70', '54', '71', '83', '51', '54', '69', '16', '92', '33', '48', '61', '43', '52', '01', '89', '19', '67', '48')
)
SEGMENT_LENGTH = 4
def get_me_max_product(segments):
try:
pass
return max([reduce(lambda x, y: int(x) + int(y), segment) for segment in segments])
except Exception, e:
raise e
def _split_down_segments(sequence):
segments = []
index = 0
while (index+SEGMENT_LENGTH) < len(sequence):
sub_sequence_set = sequence[index:index+SEGMENT_LENGTH]
total_len_sub_seq = len(sub_sequence_set[0]) # Assumption it is common
for i in range(total_len_sub_seq):
segment = []
for sub_sequence in sub_sequence_set:
segment.append(sub_sequence[i])
segments.append(segment)
index += 1
return segments
def _split_up_segments(sequence):
segments = []
index = len(sequence) - 1
while (index-SEGMENT_LENGTH) > 0:
sub_sequence_set = sequence[index-SEGMENT_LENGTH+1:index+1]
total_len_sub_seq = len(sub_sequence_set[0]) # Assumption it is common
for i in range(total_len_sub_seq):
segment = []
for sub_sequence in sub_sequence_set:
segment.append(sub_sequence[i])
segments.append(segment)
index -= 1
return segments
def _split_diagonal_segments(sequence):
raise NotImplementedError
def _split_left_segments(sequence):
raise NotImplementedError
def _split_right_segments(sequence):
raise NotImplementedError
def main(sequence):
up_segments = _split_up_segments(sequence)
max_up = get_me_max_product(up_segments)
down_segments = _split_down_segments(sequence)
max_down = get_me_max_product(down_segments)
diagonal_segments = _split_diagonal_segments(sequence)
max_diag = get_me_max_product(diagonal_segments)
left_segments = _split_left_segments(sequence)
max_left = get_me_max_product(left_segments)
right_segments = _split_right_segments(sequence)
max_right = get_me_max_product(right_segments)
return max(max_up, max_down, max_diag, max_left, max_right)
if __name__ == '__main__':
with Timer() as t:
print 'answer:', main(BIG_SEQUENCE)
print 'Time taken:%.3f seconds' % t.interval