forked from rosinality/stylegan2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprojector.py
executable file
·248 lines (189 loc) · 6.82 KB
/
projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import math
import os
import torch
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
from PIL import Image
from tqdm import tqdm
import lpips
from model import Generator
def noise_regularize(noises):
loss = 0
for noise in noises:
size = noise.shape[2]
while True:
loss = (
loss
+ (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
)
if size <= 8:
break
noise = noise.reshape([-1, 1, size // 2, 2, size // 2, 2])
noise = noise.mean([3, 5])
size //= 2
return loss
def noise_normalize_(noises):
for noise in noises:
mean = noise.mean()
std = noise.std()
noise.data.add_(-mean).div_(std)
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def latent_noise(latent, strength):
noise = torch.randn_like(latent) * strength
return latent + noise
def make_image(tensor):
return (
tensor.detach()
.clamp_(min=-1, max=1)
.add(1)
.div_(2)
.mul(255)
.type(torch.uint8)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser(
description="Image projector to the generator latent spaces"
)
parser.add_argument(
"--ckpt", type=str, required=True, help="path to the model checkpoint"
)
parser.add_argument(
"--size", type=int, default=256, help="output image sizes of the generator"
)
parser.add_argument(
"--lr_rampup",
type=float,
default=0.05,
help="duration of the learning rate warmup",
)
parser.add_argument(
"--lr_rampdown",
type=float,
default=0.25,
help="duration of the learning rate decay",
)
parser.add_argument("--lr", type=float, default=0.1, help="learning rate")
parser.add_argument(
"--noise", type=float, default=0.05, help="strength of the noise level"
)
parser.add_argument(
"--noise_ramp",
type=float,
default=0.75,
help="duration of the noise level decay",
)
parser.add_argument("--step", type=int, default=1000, help="optimize iterations")
parser.add_argument(
"--noise_regularize",
type=float,
default=1e5,
help="weight of the noise regularization",
)
parser.add_argument("--mse", type=float, default=0, help="weight of the mse loss")
parser.add_argument(
"--w_plus",
action="store_true",
help="allow to use distinct latent codes to each layers",
)
parser.add_argument(
"files", metavar="FILES", nargs="+", help="path to image files to be projected"
)
args = parser.parse_args()
n_mean_latent = 10000
resize = min(args.size, 256)
transform = transforms.Compose(
[
transforms.Resize(resize),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
imgs = []
for imgfile in args.files:
img = transform(Image.open(imgfile).convert("RGB"))
imgs.append(img)
imgs = torch.stack(imgs, 0).to(device)
g_ema = Generator(args.size, 512, 8)
g_ema.load_state_dict(torch.load(args.ckpt)["g_ema"], strict=False)
g_ema.eval()
g_ema = g_ema.to(device)
with torch.no_grad():
noise_sample = torch.randn(n_mean_latent, 512, device=device)
latent_out = g_ema.style(noise_sample)
latent_mean = latent_out.mean(0)
latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5
percept = lpips.PerceptualLoss(
model="net-lin", net="vgg", use_gpu=device.startswith("cuda")
)
noises_single = g_ema.make_noise()
noises = []
for noise in noises_single:
noises.append(noise.repeat(imgs.shape[0], 1, 1, 1).normal_())
latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(imgs.shape[0], 1)
if args.w_plus:
latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1)
latent_in.requires_grad = True
for noise in noises:
noise.requires_grad = True
optimizer = optim.Adam([latent_in] + noises, lr=args.lr)
pbar = tqdm(range(args.step))
latent_path = []
for i in pbar:
t = i / args.step
lr = get_lr(t, args.lr)
optimizer.param_groups[0]["lr"] = lr
noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_ramp) ** 2
latent_n = latent_noise(latent_in, noise_strength.item())
img_gen, _ = g_ema([latent_n], input_is_latent=True, noise=noises)
batch, channel, height, width = img_gen.shape
if height > 256:
factor = height // 256
img_gen = img_gen.reshape(
batch, channel, height // factor, factor, width // factor, factor
)
img_gen = img_gen.mean([3, 5])
p_loss = percept(img_gen, imgs).sum()
n_loss = noise_regularize(noises)
mse_loss = F.mse_loss(img_gen, imgs)
loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
noise_normalize_(noises)
if (i + 1) % 100 == 0:
latent_path.append(latent_in.detach().clone())
pbar.set_description(
(
f"perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};"
f" mse: {mse_loss.item():.4f}; lr: {lr:.4f}"
)
)
img_gen, _ = g_ema([latent_path[-1]], input_is_latent=True, noise=noises)
filename = os.path.splitext(os.path.basename(args.files[0]))[0] + ".pt"
img_ar = make_image(img_gen)
result_file = {}
for i, input_name in enumerate(args.files):
noise_single = []
for noise in noises:
noise_single.append(noise[i : i + 1])
result_file[input_name] = {
"img": img_gen[i],
"latent": latent_in[i],
"noise": noise_single,
}
img_name = os.path.splitext(os.path.basename(input_name))[0] + "-project.png"
pil_img = Image.fromarray(img_ar[i])
pil_img.save(img_name)
torch.save(result_file, filename)