-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmubert.py
77 lines (65 loc) · 4.27 KB
/
mubert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#@title **Define Mubert methods and pre-compute things**
import subprocess, time
import numpy as np
from sentence_transformers import SentenceTransformer
minilm = SentenceTransformer('all-MiniLM-L6-v2')
mubert_tags_string = 'tribal,action,kids,neo-classic,run 130,pumped,jazz / funk,ethnic,dubtechno,reggae,acid jazz,liquidfunk,funk,witch house,tech house,underground,artists,mystical,disco,sensorium,r&b,agender,psychedelic trance / psytrance,peaceful,run 140,piano,run 160,setting,meditation,christmas,ambient,horror,cinematic,electro house,idm,bass,minimal,underscore,drums,glitchy,beautiful,technology,tribal house,country pop,jazz & funk,documentary,space,classical,valentines,chillstep,experimental,trap,new jack swing,drama,post-rock,tense,corporate,neutral,happy,analog,funky,spiritual,sberzvuk special,chill hop,dramatic,catchy,holidays,fitness 90,optimistic,orchestra,acid techno,energizing,romantic,minimal house,breaks,hyper pop,warm up,dreamy,dark,urban,microfunk,dub,nu disco,vogue,keys,hardcore,aggressive,indie,electro funk,beauty,relaxing,trance,pop,hiphop,soft,acoustic,chillrave / ethno-house,deep techno,angry,dance,fun,dubstep,tropical,latin pop,heroic,world music,inspirational,uplifting,atmosphere,art,epic,advertising,chillout,scary,spooky,slow ballad,saxophone,summer,erotic,jazzy,energy 100,kara mar,xmas,atmospheric,indie pop,hip-hop,yoga,reggaeton,lounge,travel,running,folk,chillrave & ethno-house,detective,darkambient,chill,fantasy,minimal techno,special,night,tropical house,downtempo,lullaby,meditative,upbeat,glitch hop,fitness,neurofunk,sexual,indie rock,future pop,jazz,cyberpunk,melancholic,happy hardcore,family / kids,synths,electric guitar,comedy,psychedelic trance & psytrance,edm,psychedelic rock,calm,zen,bells,podcast,melodic house,ethnic percussion,nature,heavy,bassline,indie dance,techno,drumnbass,synth pop,vaporwave,sad,8-bit,chillgressive,deep,orchestral,futuristic,hardtechno,nostalgic,big room,sci-fi,tutorial,joyful,pads,minimal 170,drill,ethnic 108,amusing,sleepy ambient,psychill,italo disco,lofi,house,acoustic guitar,bassline house,rock,k-pop,synthwave,deep house,electronica,gabber,nightlife,sport & fitness,road trip,celebration,electro,disco house,electronic'
mubert_tags = np.array(mubert_tags_string.split(','))
mubert_tags_embeddings = minilm.encode(mubert_tags)
from IPython.display import Audio, display
import httpx
import json
def get_track_by_tags(tags, pat, duration, maxit=20, autoplay=False, loop=False):
if loop:
mode = "loop"
else:
mode = "track"
r = httpx.post('https://api-b2b.mubert.com/v2/RecordTrackTTM',
json={
"method":"RecordTrackTTM",
"params": {
"pat": pat,
"duration": duration,
"tags": tags,
"mode": mode
}
})
rdata = json.loads(r.text)
assert rdata['status'] == 1, rdata['error']['text']
trackurl = rdata['data']['tasks'][0]['download_link']
print('Generating track ', end='')
for i in range(maxit):
r = httpx.get(trackurl)
if r.status_code == 200:
#display(Audio(trackurl, autoplay=autoplay))
#return Audio(trackurl, autoplay=autoplay)
return trackurl
break
time.sleep(1)
print('.', end='')
def find_similar(em, embeddings, method='cosine'):
scores = []
for ref in embeddings:
if method == 'cosine':
scores.append(1 - np.dot(ref, em)/(np.linalg.norm(ref)*np.linalg.norm(em)))
if method == 'norm':
scores.append(np.linalg.norm(ref - em))
return np.array(scores), np.argsort(scores)
def get_tags_for_prompts(prompts, top_n=3, debug=False):
prompts_embeddings = minilm.encode(prompts)
ret = []
for i, pe in enumerate(prompts_embeddings):
scores, idxs = find_similar(pe, mubert_tags_embeddings)
top_tags = mubert_tags[idxs[:top_n]]
top_prob = 1 - scores[idxs[:top_n]]
if debug:
print(f"Prompt: {prompts[i]}\nTags: {', '.join(top_tags)}\nScores: {top_prob}\n\n\n")
ret.append((prompts[i], list(top_tags)))
return ret
def generate_track_by_prompt(prompt, duration, pat, loop=True):
_, tags = get_tags_for_prompts([prompt,])[0]
try:
return get_track_by_tags(tags, pat, duration, autoplay=True, loop=loop)
except Exception as e:
print(str(e))
print('\n')