Skip to content

Latest commit

 

History

History
92 lines (79 loc) · 2 KB

installation.md

File metadata and controls

92 lines (79 loc) · 2 KB

INSTALLING EVERYTHING

ANACONDA (if you don't have)

    Download from https://www.continuum.io/downloads (download the python 2.7 version)

bash Anaconda2-4.4.0-Linux-x86_64.sh
vim ~/.bashrc

In .bashrc, type:

export PATH="$HOME/anaconda2/bin:$PATH"

Source the file:

source ~/.bashrc

MUJOCO

Go to website: https://www.roboti.us/license.html

a) mujoco files:
    Under Downloads, download mjpro131 linux
    extract/unzip it
mkdir ~/.mujoco cp -R mjpro131 ~/.mujoco/mjpro131
b) license key:
    i) If you don't have one: sign up for 30-day free trial to get a license
    Need to sudo chmod permissions on the downloaded executable (for getting computer id)
    Email will give you mjkey.txt + LICENSE.txt
cp mjkey.txt ~/.mujoco/mjkey.txt
    ii) Else, just copy your existing key into ~/.mujoco/mjkey.txt


RLLAB

git clone https://github.com/nagaban2/rllab.git
cd rllab
./scripts/setup_linux.sh
./scripts/setup_mujoco.sh
vim ~/.bashrc

In .bashrc, type:

export PATH="$HOME/anaconda2/envs/rllab3/bin:$PATH"
export PYTHONPATH="$HOME/rllab:$PYTHONPATH"

Source the file:

source ~/.bashrc
source activate rllab3

CUDA (Note: assuming you already have cuda and cudnn)

    Set paths:

vim ~/.bashrc

In .bashrc, type:

export PATH="/usr/local/cuda-8.0/bin:$PATH"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"

Source the file:

source ~/.bashrc

    To see if gpu is being used while running code:

nvidia-smi

OTHER

source activate rllab3
pip install gym
pip install cloudpickle
pip install seaborn