-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_solution.py
148 lines (122 loc) · 5.46 KB
/
lstm_solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class LSTM(nn.Module):
def __init__(
self,
vocabulary_size=40479,
embedding_size=768,
hidden_size=512,
num_layers=1,
learn_embeddings=False,
_embedding_weight=None,
):
super(LSTM, self).__init__()
self.vocabulary_size = vocabulary_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.learn_embeddings = learn_embeddings
self.embedding = nn.Embedding(
vocabulary_size, embedding_size, padding_idx=0, _weight=_embedding_weight
)
self.lstm = nn.LSTM(
embedding_size, hidden_size, num_layers=num_layers, batch_first=True
)
self.classifier = nn.Sequential(
nn.Linear(hidden_size, embedding_size),
nn.ReLU(),
nn.Linear(embedding_size, vocabulary_size, bias=False),
)
# Tying classifier and embedding weights (similar to GPT-1)
self.classifier[2].weight = self.embedding.weight
# Freeze the embedding weights, depending on learn_embeddings
self.embedding.requires_grad_(learn_embeddings)
def forward(self, inputs, hidden_states):
"""LSTM.
This is a Long Short-Term Memory network for language modeling. This
module returns for each position in the sequence the log-probabilities
of the next token. See Lecture 05, slides 42-60.
Parameters
----------
inputs (`torch.LongTensor` of shape `(batch_size, sequence_length)`)
The input tensor containing the token sequences.
hidden_states (`tuple` of size 2)
The (initial) hidden state. This is a tuple containing
- h (`torch.FloatTensor` of shape `(num_layers, batch_size, hidden_size)`)
- c (`torch.FloatTensor` of shape `(num_layers, batch_size, hidden_size)`)
Returns
-------
log_probas (`torch.FloatTensor` of shape `(batch_size, sequence_length, vocabulary_size)`)
A tensor containing the log-probabilities of the next token for
all positions in each sequence of the batch. For example, `log_probas[0, 3, 6]`
corresponds to log p(x_{5} = token_{7} | x_{0:4}) (x_{5} for the word
after x_{4} at index 3, and token_{7} for index 6) for the 1st sequence
of the batch (index 0).
hidden_states (`tuple` of size 2)
The final hidden state. This is a tuple containing
- h (`torch.FloatTensor` of shape `(num_layers, batch_size, hidden_size)`)
- c (`torch.FloatTensor` of shape `(num_layers, batch_size, hidden_size)`)
"""
# ==========================
# TODO: Write your code here
# ==========================
inputs = self.embedding(inputs)
# print('inputs', inputs.shape)
out, state = self.lstm(inputs, hidden_states)
# print('out', out.shape)
z = F.log_softmax(self.classifier(out), dim=2)
# print('z', z.shape)
return z, state
def loss(self, log_probas, targets, mask):
"""Loss function.
This function computes the loss (negative log-likelihood).
Parameters
----------
log_probas (`torch.FloatTensor` of shape `(batch_size, sequence_length, vocabulary_size)`)
A tensor containing the log-probabilities of the next token for
all positions in each sequence of the batch.
targets (`torch.LongTensor` of shape `(batch_size, sequence_length)`)
A tensor containing the target next tokens for all positions in
each sequence of the batch.
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`)
A tensor containing values in {0, 1} only, where the value is 0
for positions corresponding to padding in the sequence, and 1
otherwise.
Returns
-------
loss (`torch.FloatTensor` scalar)
The scalar loss, corresponding to the (mean) negative log-likelihood.
"""
# print(log_probas.shape, targets.shape, mask.shape)
loss = F.nll_loss(log_probas.permute(0, 2, 1), targets, reduction='none')
# seq_len = torch.count_nonzero(torch.flatten(mask))
loss_masked = (loss*mask).sum(dim=1)/mask.sum(dim=1)
loss_avg = torch.mean(loss_masked, 0)
return loss_avg
def initial_states(self, batch_size, device=None):
if device is None:
device = next(self.parameters()).device
shape = (self.num_layers, batch_size, self.hidden_size)
# The initial state is a constant here, and is not a learnable parameter
h_0 = torch.zeros(shape, dtype=torch.float, device=device)
c_0 = torch.zeros(shape, dtype=torch.float, device=device)
return (h_0, c_0)
@classmethod
def load_embeddings_from(
cls, filename, hidden_size=512, num_layers=1, learn_embeddings=False
):
# Load the token embeddings from filename
with open(filename, "rb") as f:
embeddings = np.load(f)
weight = torch.from_numpy(embeddings["tokens"])
vocabulary_size, embedding_size = weight.shape
return cls(
vocabulary_size,
embedding_size,
hidden_size,
num_layers,
learn_embeddings,
_embedding_weight=weight,
)