-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmodels.py
586 lines (472 loc) · 24.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import files
import os
import time
from tqdm.autonotebook import tqdm
import numpy as np
np.warnings.filterwarnings('ignore')
from scipy.stats import norm
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
## EnbPI
from enbpi.PI_class_EnbPI import prediction_interval
import enbpi.utils_EnbPI as util
def fit_predict(X, Y, alpha, methods, params_methods, basemodel, params_basemodel, train_size):
""" Function that trains the methods provided on samples from X,Y data and
use these trained methods to predict on the last samples.
Parameters
----------
X : covariates, array of dim d x n (d number of covariates, n number of observations/sample size)
Y : response, array of dim n x 1
alpha : miscoverage level, in [0,1]
methods : list of strings, containing the methods to apply
params_methods :
basemodel : regression basemodel, currently can be 'RF' or 'OLS'
params_basemodel :
train_size : number of samples to keep for training only
(the first train_size samples will be kept, and the methods will preedict on the last ones)
Returns
-------
y_lowers : inferior bound of the predicted intervals, array of dim len(methods) x (n-train_size)
results are in the same order than the methods list
y_uppers : superior bound of the predicted intervals, array of dim len(methods) x (n-train_size)
times : user time spent for each prediction (proper training, calibration and prediction)
times_proc : CPU time spent for each prediction (proper training, calibration and prediction)
"""
# basics parameters
n = len(Y)
test_size = n - train_size
# randomized will choose randomly which sample are for training and which are for calibration
if 'randomized' in params_methods:
randomized = params_methods['randomized']
else:
randomized = False
# creation of the id for training and calibration
if randomized:
idx = np.random.permutation(train_size)
else:
idx = np.array(range(train_size))
n_half = int(np.floor(train_size/2))
idx_train, idx_cal = idx[:n_half], idx[n_half:2*n_half]
# initialization of the arrays containing the bounds of the intervals, and the computation times
y_lowers = np.empty((len(methods),test_size))
y_uppers = np.empty((len(methods),test_size))
times = np.empty((len(methods),test_size))
times_proc = np.empty((len(methods),test_size))
# online will retrain the methods for each new test point, while offline will train
# once on the first training set and use this model to predict on the whole test set
if 'online' in params_methods:
online = params_methods['online']
else:
online = True
# methods definitions
EnbPIs = ['EnbPI','EnbPI_Mean']
mean_reg_methods = ['Gaussian', 'CP', 'ACP']
if any(method in methods for method in mean_reg_methods):
mean_reg = True
else:
mean_reg = False
# retrieve the basemodel parameters
assert basemodel in ['RF','OLS'], 'basemodel must be RF or OLS.'
if basemodel == 'RF':
cores = params_basemodel['cores']
if mean_reg:
n_estimators = params_basemodel['n_estimators']
min_samples_leaf = params_basemodel['min_samples_leaf']
max_features = params_basemodel['max_features']
# initialize parameters for 'ACP'
if 'ACP' in methods:
alpha_t = alpha
gamma = params_methods['gamma']
if online:
for i in range(test_size):
# define the new training and testing set.
# the training set will then be splitted onto train/calibration
# the testing set is just the i-th point
x_train = np.transpose(X)[i:(train_size+i),]
x_test = np.transpose(X)[(train_size+i),].reshape(1, -1)
y_train = Y[i:(train_size+i)]
y_test = Y[(train_size+i)]
if mean_reg:
if basemodel == 'RF':
# define RF model
reg = RandomForestRegressor(n_estimators=n_estimators, min_samples_leaf=min_samples_leaf, max_features=max_features,
random_state=1, n_jobs=cores)
elif basemodel == 'OLS':
reg = LinearRegression()
start_mean_reg = time.time()
start_mean_reg_proc = time.process_time()
# fit the underlying model on the proper training points (subset of training points)
reg.fit(x_train[idx_train,:], y_train[idx_train])
# calibration predictions (subset of training points)
y_pred_cal = reg.predict(x_train[idx_cal,:])
# compute the calibrated residuals
res_cal = y_train[idx_cal]-y_pred_cal
# predict on the test point
y_pred = reg.predict(x_test)
end_mean_reg_proc = time.process_time()
end_mean_reg = time.time()
for idm, method in enumerate(methods):
if method == "Gaussian":
start_gaussian = time.time()
start_gaussian_proc = time.process_time()
# create the bounds for the gaussian interval, centered around y_pred
window = norm.ppf(1-alpha/2)*np.std(res_cal)
y_lower_i, y_upper_i = y_pred-window, y_pred+window
end_gaussian_proc = time.process_time()
end_gaussian = time.time()
time_method = end_mean_reg-start_mean_reg+end_gaussian-start_gaussian
time_method_proc = end_mean_reg_proc-start_mean_reg_proc+end_gaussian_proc-start_gaussian_proc
elif method == "CP":
start_cp = time.time()
start_cp_proc = time.process_time()
# compute the score (ie absolute value of the residuals)
res_cal_cp = np.abs(res_cal)
# compute the corrected quantile
window = np.quantile(res_cal_cp,(1-alpha)*(1+1/len(idx_cal)))
# create the bounds for the CP interval, centered around y_pred
y_lower_i, y_upper_i = y_pred-window, y_pred+window
end_cp_proc = time.process_time()
end_cp = time.time()
time_method = end_mean_reg-start_mean_reg+end_cp-start_cp
time_method_proc = end_mean_reg_proc-start_mean_reg_proc+end_cp_proc-start_cp_proc
elif method == "ACP":
start_acp = time.time()
start_acp_proc = time.process_time()
# compute the score (ie absolute value of the residuals)
res_cal_acp = np.abs(res_cal)
if(alpha_t >= 1): # => 1-alpha_t <= 0 => predict empty set
y_lower_i, y_upper_i = 0, 0
err = 1 # err = 1 if the point is not included, 0 otherwise
elif(alpha_t <= 0): # => 1-alpha_t >= 1 => predict the whole real line
y_lower_i, y_upper_i = -np.inf, np.inf
err = 0
else: # => 1-alpha_t in ]0,1[ => compute the quantiles
# compute the updated quantile
window = np.quantile(res_cal_acp,(1-alpha_t))
# create the bounds for the ACP interval, centered around y_pred
y_lower_i, y_upper_i = y_pred-window, y_pred+window
err = 1-float((y_lower_i <= Y[train_size+i]) & (Y[train_size+i] <= y_upper_i))
# compute next value of alpha_t using updating scheme
alpha_t = alpha_t + gamma*(alpha-err)
end_acp_proc = time.process_time()
end_acp = time.time()
time_method = end_mean_reg-start_mean_reg+end_acp-start_acp
time_method_proc = end_mean_reg_proc-start_mean_reg_proc+end_acp_proc-start_acp_proc
if method not in EnbPIs:
# save the results in the array of results for each method
y_lowers[idm,i] = float(y_lower_i)
y_uppers[idm,i] = float(y_upper_i)
times[idm,i] = time_method
times_proc[idm,i] = time_method_proc
else: # if offline
# define the new training and testing set.
# the training set will then be splitted onto train/calibration
x_train = np.transpose(X)[:train_size,]
x_test = np.transpose(X)[train_size:,]
y_train = Y[:train_size]
y_test = np.array([Y[train_size:]])
if mean_reg:
if basemodel == 'RF':
# define RF model
reg = RandomForestRegressor(n_estimators=n_estimators, min_samples_leaf=min_samples_leaf, max_features=max_features,
random_state=1,n_jobs=cores)
elif basemodel == 'OLS':
reg = LinearRegression()
start_mean_reg = time.time()
start_mean_reg_proc = time.process_time()
# fit the underlying model on the proper training points (subset of training points)
reg.fit(x_train[idx_train,:], y_train[idx_train])
# calibration predictions (subset of training points)
y_pred_cal = reg.predict(x_train[idx_cal,:])
# compute the calibrated residuals
res_cal = y_train[idx_cal]-y_pred_cal
# predict on the test point
y_pred = reg.predict(x_test)
end_mean_reg_proc = time.process_time()
end_mean_reg = time.time()
for idm, method in enumerate(methods):
if method == "Gaussian":
start_gaussian = time.time()
start_gaussian_proc = time.process_time()
window = norm.ppf(1-alpha/2)*np.std(res_cal)
y_lower_i, y_upper_i = y_pred-window, y_pred+window
end_gaussian_proc = time.process_time()
end_gaussian = time.time()
time_method = end_mean_reg-start_mean_reg+end_gaussian-start_gaussian
time_method_proc = end_mean_reg_proc-start_mean_reg_proc+end_gaussian_proc-start_gaussian_proc
elif method == "CP":
start_cp = time.time()
start_cp_proc = time.process_time()
res_cal_cp = np.abs(res_cal)
window = np.quantile(res_cal_cp,(1-alpha)*(1+1/len(idx_cal)))
y_lower_i, y_upper_i = y_pred-window, y_pred+window
end_cp_proc = time.process_time()
end_cp = time.time()
time_method = end_mean_reg-start_mean_reg+end_cp-start_cp
time_method_proc = end_mean_reg_proc-start_mean_reg_proc+end_cp_proc-start_cp_proc
if method not in EnbPIs:
y_lowers[idm,:] = y_lower_i
y_uppers[idm,:] = y_upper_i
times[idm,:] = time_method
times_proc[idm,:] = time_method_proc
# create list of EnbPI methods to run (ie intersection of methods to run and EnbPIs methods)
EnbPIs_to_run = list(set(methods) & set(EnbPIs))
if len(EnbPIs_to_run) > 0: # if at least one EnbPI method to run
for method in EnbPIs_to_run:
idm = methods.index(method)
# standard EnbPI parameters
methods = ['Ensemble']
itrial = 1
miss_test_idx = []
stride = 1
data_name = ['Friedman_ARMA_Simulations']
B = params_methods['B']
if 'mean' in params_methods:
mean = params_methods['mean']
else:
mean = False
n_estimators = params_basemodel['n_estimators']
min_samples_leaf = params_basemodel['min_samples_leaf']
max_features = params_basemodel['max_features']
x_train = np.transpose(X)[:train_size,]
x_predict = np.transpose(X)[train_size:,]
y_train = Y[:train_size]
y_predict = np.array([Y[train_size:]])
random_forest = RandomForestRegressor(n_estimators=n_estimators, criterion='mse', random_state=1,
bootstrap=False, min_samples_leaf=min_samples_leaf, max_features=max_features)
start_enbpi = time.time()
start_enbpi_proc = time.process_time()
rf_results = prediction_interval(random_forest, x_train, x_predict, y_train, y_predict)
result_rf = rf_results.run_experiments(alpha, B, stride, data_name, itrial, miss_test_idx, methods=methods,
get_plots=True, mean=mean)
end_enbpi_proc = time.process_time()
end_enbpi = time.time()
y_lowers[idm,:] = result_rf[0]['lower']
y_uppers[idm,:] = result_rf[0]['upper']
times[idm,:] = end_enbpi - start_enbpi
times_proc[idm,:] = end_enbpi_proc - start_enbpi_proc
return y_lowers, y_uppers, times, times_proc
def fit_predict_ACPs(X, Y, alpha, tab_gamma, basemodel, params_basemodel, train_size):
n = len(Y)
test_size = n - train_size
idx = np.array(range(train_size))
n_half = int(np.floor(train_size/2))
idx_train, idx_cal = idx[:n_half], idx[n_half:2*n_half]
y_lowers = np.empty((len(tab_gamma),test_size))
y_uppers = np.empty((len(tab_gamma),test_size))
gammas = np.empty((len(tab_gamma),test_size))
tab_alpha_t = np.full((len(tab_gamma),test_size), alpha)
tab_err_gamma = np.empty((len(tab_gamma),test_size))
tab_len_gamma = np.empty((len(tab_gamma),test_size))
# methods and parameters
mean_reg = True
assert basemodel in ['RF','OLS'], 'basemodel must be RF or OLS.'
if basemodel == 'RF':
if mean_reg:
n_estimators = params_basemodel['n_estimators']
min_samples_leaf = params_basemodel['min_samples_leaf']
max_features = params_basemodel['max_features']
for i in range(test_size):
x_train = np.transpose(X)[i:(train_size+i),]
x_test = np.transpose(X)[(train_size+i),].reshape(1, -1)
y_train = Y[i:(train_size+i)]
y_test = Y[(train_size+i)]
if mean_reg:
if basemodel == 'RF':
# define RF model
reg = RandomForestRegressor(n_estimators=n_estimators, min_samples_leaf=min_samples_leaf, max_features=max_features,
random_state=1)
elif basemodel == 'OLS':
reg = LinearRegression()
reg.fit(x_train[idx_train,:], y_train[idx_train])
# calibration predictions
y_pred_cal = reg.predict(x_train[idx_cal,:])
res_cal = np.abs(y_train[idx_cal]-y_pred_cal)
y_pred = reg.predict(x_test)
for idg, gamma in enumerate(tab_gamma):
alpha_t = tab_alpha_t[idg,i]
# Original ACP
if(1-alpha_t <= 0):
y_lower_i, y_upper_i = 0, 0
err = 1
elif(1-alpha_t >= 1):
y_lower_i, y_upper_i = -np.inf, np.inf
err = 0
else:
window = np.quantile(res_cal,1-alpha_t)
y_lower_i, y_upper_i = y_pred-window, y_pred+window
err = 1-float((y_lower_i <= Y[train_size+i]) & (Y[train_size+i] <= y_upper_i))
y_lowers[idg,i] = float(y_lower_i)
y_uppers[idg,i] = float(y_upper_i)
gammas[idg,i] = float(gamma)
alpha_t = alpha_t + gamma*(alpha-err)
if i < (test_size-1):
tab_alpha_t[idg,i+1] = alpha_t
tab_err_gamma[idg,i] = err
tab_len_gamma[idg,i] = y_upper_i - y_lower_i
return y_lowers, y_uppers, tab_alpha_t, gammas
def run_experiments(data, alpha, methods, params_methods, basemodel, params_basemodel,
n_rep, regression, noise, params_reg, params_noise, train_size,
parent_results='results'):
if 'EnbPI' in methods:
if 'mean' in params_methods:
if params_methods['mean']:
name_enbpi = 'EnbPI_Mean'
methods[methods.index('EnbPI')] = name_enbpi
results_methods = dict.fromkeys(methods)
n = data['Y'].shape[1]
if 'online' in params_methods:
online = params_methods['online']
else:
online = True
if 'randomized' in params_methods:
randomized = params_methods['randomized']
else:
randomized = False
for method in methods:
name_dir, name_method = files.get_name_results(method, n, online, randomized, regression=regression, noise=noise,
params_noise=params_noise)
if not os.path.isdir(parent_results+'/'+name_dir):
os.mkdir(parent_results+'/'+name_dir)
elif os.path.isfile(parent_results+'/'+name_dir+'/'+name_method+'.pkl'):
results = files.load_file(parent_results+'/'+name_dir, name_method, 'pkl')
results_methods[method] = results
all_methods_ran = []
for k in tqdm(range(n_rep)):
methods_to_run = []
for method in results_methods:
if results_methods[method] is None:
methods_to_run.append(method)
elif results_methods[method]['Y_inf'].shape[0]-1 < k:
methods_to_run.append(method)
X = data['X'][k,:,:]
Y = data['Y'][k,:]
y_lowers, y_uppers, times, times_proc = fit_predict(X, Y, alpha, methods_to_run, params_methods, basemodel, params_basemodel, train_size)
for idm, method in enumerate(methods_to_run):
results = results_methods[method]
if results is None:
results = {'Y_inf': np.array([y_lowers[idm,:]]), 'Y_sup': np.array([y_uppers[idm,:]]),
'Time': np.array([times[idm,:]]), 'Time_CPU': np.array([times_proc[idm,:]])}
else:
results['Y_inf'] = np.vstack((results['Y_inf'],np.array([y_lowers[idm,:]])))
results['Y_sup'] = np.vstack((results['Y_sup'],np.array([y_uppers[idm,:]])))
results['Time'] = np.vstack((results['Time'],np.array([times[idm,:]])))
results['Time_CPU'] = np.vstack((results['Time_CPU'],np.array([times_proc[idm,:]])))
results_methods[method] = results
all_methods_ran = np.append(all_methods_ran, methods_to_run)
all_methods_ran = np.unique(all_methods_ran)
return results_methods, all_methods_ran
def run_multiple_gamma_ACP(data, alpha, tab_gamma, basemodel, params_basemodel,
n_rep, regression, noise, params_reg, params_noise, train_size,
parent_results='results'):
#assert len(tab_gamma)>1, 'tab_gamma should contain multiple values for gamma.'
methods = []
for gamma in tab_gamma:
methods.append('ACP_'+str(gamma))
results_methods = dict.fromkeys(methods)
n = data['Y'].shape[1]
for method in methods:
name_dir, name_method = files.get_name_results(method, n, True, regression=regression, noise=noise,
params_noise=params_noise)
if not os.path.isdir(parent_results+'/'+name_dir):
os.mkdir(parent_results+'/'+name_dir)
for k in tqdm(range(n_rep)):
X = data['X'][k,:,:]
Y = data['Y'][k,:]
y_lowers, y_uppers, alpha_t, gammas = fit_predict_ACPs(X, Y, alpha, tab_gamma, basemodel, params_basemodel, train_size)
for idm, method in enumerate(methods):
# methods contain ACP_gamma in the same order than tab_gamma, and then eventually ACP_optimized
results = results_methods[method]
if results is None:
results = {'Y_inf': np.array([y_lowers[idm,:]]), 'Y_sup': np.array([y_uppers[idm,:]]),
'alpha_t': np.array([alpha_t[idm,:]]), 'gammas': np.array([gammas[idm,:]])}
else:
results['Y_inf'] = np.vstack((results['Y_inf'],np.array([y_lowers[idm,:]])))
results['Y_sup'] = np.vstack((results['Y_sup'],np.array([y_uppers[idm,:]])))
results['alpha_t'] = np.vstack((results['alpha_t'],np.array([alpha_t[idm,:]])))
results['gammas'] = np.vstack((results['gammas'],np.array([gammas[idm,:]])))
results_methods[method] = results
return results_methods, methods
def run_experiments_real_data(data, alpha, methods, params_methods, basemodel, params_basemodel, train_size, dataset,
erase=False, parent_results='results'):
if 'EnbPI' in methods:
if 'mean' in params_methods:
if params_methods['mean']:
name_enbpi = 'EnbPI_Mean'
methods[methods.index('EnbPI')] = name_enbpi
results_methods = dict.fromkeys(methods)
if 'online' in params_methods:
online = params_methods['online']
else:
online = True
for method in methods:
name_dir, name_method = files.get_name_results(method, online=online, dataset=dataset, basemodel=basemodel)
if not os.path.isdir(parent_results+'/'+name_dir):
os.mkdir(parent_results+'/'+name_dir)
elif os.path.isfile(parent_results+'/'+name_dir+'/'+name_method+'.pkl') and not erase:
results = files.load_file(parent_results+'/'+name_dir, name_method, 'pkl')
results_methods[method] = results
all_methods_ran = []
methods_to_run = []
for method in results_methods:
if results_methods[method] is None:
methods_to_run.append(method)
X = data['X']
Y = data['Y']
y_lowers, y_uppers, times, times_proc = fit_predict(X, Y, alpha, methods_to_run, params_methods, basemodel, params_basemodel, train_size)
for idm, method in enumerate(methods_to_run):
results = results_methods[method]
if results is None:
results = {'Y_inf': np.array([y_lowers[idm,:]]), 'Y_sup': np.array([y_uppers[idm,:]]),
'Time': np.array([times[idm,:]]), 'Time_CPU': np.array([times_proc[idm,:]])}
else:
results['Y_inf'] = np.vstack((results['Y_inf'],np.array([y_lowers[idm,:]])))
results['Y_sup'] = np.vstack((results['Y_sup'],np.array([y_uppers[idm,:]])))
results['Time'] = np.vstack((results['Time'],np.array([times[idm,:]])))
results['Time_CPU'] = np.vstack((results['Time_CPU'],np.array([times_proc[idm,:]])))
results_methods[method] = results
all_methods_ran = np.append(all_methods_ran, methods_to_run)
all_methods_ran = np.unique(all_methods_ran)
return results_methods, all_methods_ran
def run_multiple_gamma_ACP_real_data(data, alpha, tab_gamma, basemodel, params_basemodel,
train_size, dataset, erase=False, parent_results='results'):
#assert len(tab_gamma)>1, 'tab_gamma should contain multiple values for gamma.'
methods = []
for gamma in tab_gamma:
methods.append('ACP_'+str(gamma))
results_methods = dict.fromkeys(methods)
for method in methods:
name_dir, name_method = files.get_name_results(method, dataset=dataset, basemodel=basemodel)
if not os.path.isdir(parent_results+'/'+name_dir):
os.mkdir(parent_results+'/'+name_dir)
elif os.path.isfile(parent_results+'/'+name_dir+'/'+name_method+'.pkl') and not erase:
results = files.load_file(parent_results+'/'+name_dir, name_method, 'pkl')
results_methods[method] = results
all_methods_ran = []
methods_to_run = []
tab_gamma_to_run = []
for idg,gamma in enumerate(tab_gamma):
method = methods[idg]
if results_methods[method] is None and not erase:
methods_to_run.append(method)
tab_gamma_to_run.append(gamma)
elif erase:
methods_to_run.append(method)
tab_gamma_to_run.append(gamma)
X = data['X']
Y = data['Y']
if len(tab_gamma_to_run) > 0:
y_lowers, y_uppers, alpha_t, gammas = fit_predict_ACPs(X, Y, alpha, tab_gamma_to_run, basemodel, params_basemodel, train_size)
for idm, method in enumerate(methods_to_run):
# methods contain ACP_gamma in the same order than tab_gamma, and then eventually ACP_optimized
results = results_methods[method]
if results is None:
results = {'Y_inf': np.array([y_lowers[idm,:]]), 'Y_sup': np.array([y_uppers[idm,:]]),
'alpha_t': np.array([alpha_t[idm,:]]), 'gammas': np.array([gammas[idm,:]])}
else:
results['Y_inf'] = np.vstack((results['Y_inf'],np.array([y_lowers[idm,:]])))
results['Y_sup'] = np.vstack((results['Y_sup'],np.array([y_uppers[idm,:]])))
results['alpha_t'] = np.vstack((results['alpha_t'],np.array([alpha_t[idm,:]])))
results['gammas'] = np.vstack((results['gammas'],np.array([gammas[idm,:]])))
results_methods[method] = results
return results_methods, methods