-
Notifications
You must be signed in to change notification settings - Fork 42
/
vbfa.py
executable file
·306 lines (227 loc) · 9.42 KB
/
vbfa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# VBFA
# variational BAyesian Factor Analysis
from numpy import *
import numpy.random as random
import numpy.linalg as linalg
import scipy.special as special
import sys
import cPickle
import logging as L
import scipy as S
import pdb
#use everything from BayesNet
from bayesnet import *
from expressionnet import AExpressionModule
#node which captures the data which might have a 1./2. moment as well:
class CNodeZ(AGaussNode):
pass
# def __init__(self,E1, E2 = None, cov = None, prec = None):
# AGaussNode.update(self, E1, E2, cov, prec)
class CNodeS(AVGaussNode):
def __init__(self,net,prec=1):
AVGaussNode.__init__(self,dim=[net._N,net.components],cdim=1)
def update(self,net=None):
if(net==None):
AVGaussNode.update(self)
return
W = net.W
Eps=net.Eps
p=eye(net.components)+tensordot(Eps.E1,W.E2,[0,0])
self.cov = linalg.inv(p)
matrix = dot( dot(self.cov,W.E1.T), diag(Eps.E1) )
self.E1 = dot(net.Z.E1,matrix.T)
AVGaussNode.update(self)
pass
class CNodeW(AVGaussNode):
def __init__(self,net,prec=1):
AVGaussNode.__init__(self,dim=[net._D,net.components])
#obsolete due to update in Eps
#self.E2W = zeros([net._D,net._N])
def updateE2(self,net=None):
if net is None:
AVGaussNode.update(self)
return
self.E2[:,:,:] = self.cov
Ss = net.S.E2.sum(axis=0).T
for d in range(self.E2.shape[0]):
self.E2[d,:,:] = self.E2[d,:,:] + S.outer(self.E1[d,:],self.E1[d,:])
#this is obsolete due to update in Eps
#self.E2W_[d] = (self.E2[d,:,:]*Ss).sum()
pass
def update(self,net=None):
if(net==None):
self.updateE2()
return
S = net.S
Alpha = net.Alpha
Eps = net.Eps
M = S.E2.sum(axis=0)
for d in range(net._D):
p = diag(Alpha.E1) + Eps.E1[d]*M
self.cov[d,:,:] = linalg.inv(p)
self.E1[d,:] = dot(self.cov[d,:,:],Eps.E1[d]*dot(S.E1.T,net.Z.E1[:,d]))
#for 2. moment-calculation
#AVGaussNode.update(self)
self.updateE2(net)
class CNodeEps(AGammaNode):
def __init__(self,net,prior=[100,1]):
AGammaNode.__init__(self,dim=[net._D],prior=prior)
def update(self,net):
S = net.S
W = net.W
Z = net.Z.E1
# take second moment into account.
self.b[:] = self.pb + net._N/2.0
#set a:
TD = Z*tensordot(S.E1,W.E1,[1,1])
#linearise in dimension space to handle high dimensions better:
if 0:
TD2= zeros([net._D,net._N])
for d in range(net._D):
TD2[d,:] = tensordot(W.E2[d,:,:],S.E2,([1],[1])).trace(axis1=0,axis2=2).sum()
else:
Ss = net.S.E2.sum(axis=0).T
TD2 = (W.E2*Ss).sum(axis=1).sum(axis=1)
t = net.Z.E2.sum(axis=0) - 2*TD.sum(axis=0) + TD2
self.a[:] = self.pa + 0.5*t
#the non-compressed version of this is below:
#for d in range(net._D):
# t=0
# for n in range(net._N):
# t = t +Z[n,d]**2 -2*Z[n,d]*dot(W.E1[d,:],S.E1[n,:]) + trace(dot(W.E2[d,:,:],S.E2[n,:,:]))
# self.a[d] = self.a[d] + 0.5*t
#
#update expectation values:
AGammaNode.update(self)
class CNodeAlpha(AGammaNode):
def __init__(self,net,prior=[1E-3,1E-3]):
AGammaNode.__init__(self,dim=[net.components],prior=prior)
def update(self,net):
W = net.W
Ewdwd = 0
Ewdwd = W.E2.sum(axis=0)
self.a[:] = self.pa + 0.5*diag(Ewdwd)
self.b[:] = self.pb + net._D/2.0
#update expectation values
AGammaNode.update(self)
class CVBFA(AExpressionModule):
'''CVBFA(AExpressionModule)
- Variational Bayesian Factor analysis module'''
def getDefaultParameters(self):
"""return a hash with default parameter value for this BayesNet"""
#
dp = AExpressionModule.getDefaultParameters(self)
dp['initType'] = 'pca'
dp['nIterations'] = 20
dp['schedule'] = ['S','W','Alpha','Eps']
dp['components'] = 5
dp['priors'] = {}
dp['name_str'] = {}
return dp
def __init__(self,init_data=None,E1=None,E2=None,**parameters):
"""create the object"""
#handle setting of parameters via Bayesnet constructor
ABayesNet.__init__(self,parameters=parameters)
#priors for the various components:
if(not self.priors.has_key('Alpha')): self.priors['Alpha']={'priors': [1E-3,1E-3]}
if(not self.priors.has_key('Eps')): self.priors['Eps']={'priors': [1,100]}
self.dataNode=None
if init_data is None and E1 is not None:
init_data = CGauss(E1=E1,E2=E2)
if init_data is not None:
self.init(init_data)
def init(self,init_data,Pi=None):
if not isinstance(init_data,AGaussNode):
raise Exception("initialization is only possible from a GaussNode")
self.Z = CNodeZ(node=init_data)
self.dataNode = self.Z
# set dimensionality of the data
[self._N, self._D] = self.Z.E1.shape
#add the new nodes - to be replaced by XML init:
self.nodes = {'S':CNodeS(self),'W':CNodeW(self),'Eps':CNodeEps(self,self.priors['Eps']['priors']),'Alpha':CNodeAlpha(self,self.priors['Alpha']['priors'])}
for n in self.nodes.keys(): setattr(self,n,self.nodes[n])
#pca initialisation
if self.initType == 'pca':
sv = linalg.svd(self.Z.E1, full_matrices = 0);
[s0,w0] = [sv[0][:,0:self.components], S.dot(S.diag(sv[1]),sv[2]).T[:,0:self.components]]
v = s0.std(axis=0)
s0 /= v;
w0 *= v;
self.S.E1 = s0
self.W.E1 = w0
self.W.update()
self.S.update()
else:
print "random init"
self.S.E1 = random.randn(self._N,self.components)
self.W.E1 = random.randn(self._D,self.components)
self.S.update()
self.W.update()
self.W.updateE2(self)
pass
def getName(self):
"""return a name summarising the main parameters"""
name = "VBFA: %s C=%d" % (self.name_str,self.components)
return name
def iterate(self, nIterations=None, forceIterations=None):
'''iterate(nIteations=None,forceIterations=None)
- perform nIterations; per default(None) parameters are tken from local intsance settings
'''
forceIterations=True
L.debug('SparseFA iterate')
if nIterations is None: nIterations = self.nIterations
if forceIterations is None: forceIterations = self.forceIterations
LB = 0
for iter in range(nIterations):
self.iterationCount+=1
t = time.time();
for node in self.schedule:
self.updateNode(node)
#self.calcBound()
#calc reconstruction error
Zr = S.dot(self.S.E1,self.W.E1.T)
Zd = self.Z.E1-Zr
error = ((Zd)**2).mean()
print "reconstruction error: %f" % (error)
if (abs(LB - self._bound) < self.tolerance) and not forceIterations:
L.info('Converged')
break
L.info("Iteration %d: time=%.2f bound=%f" % (iter,time.time() - t, self._bound))
LB = self._bound
return self._bound
#calculate the variational bound:
def calcBound(self):
L.debug('CVBFA calcBound')
self._bound = ABayesNet.calcBound(self)
#p(data|..)
#OLI: is this right? the last term should be <-1/2*tau(D-W*x)^{2}>
#try: here we recyle the calculation made in the update Eps:
Bx = -self._N*self._D/2.0*S.log(2*pi) + self._N/2.0*self.Eps.E2.sum() - sum(self.Eps.E1*(self.Eps.a-self.Eps.pa))
#Bx = -self._N*self._D/2.0*S.log(2*pi) + self._N/2.0*self.Eps.E2.sum() + sum(self.Eps.E1*self.Eps.pa-self.Eps.b)
#note : trace (S.cov) comes from the fact that the 2nd moment of S is not just S.E1**2 but + cov!
#KL q(S)/P(S)
#orig
Bss= -self._N/2.0*logdet(self.S.cov) - self._N/2.0*trace(eye(self.components)-self.S.cov) + 0.5*(self.S.E1**2).sum()
#KL q(W)/p(W)
Bww= -self._D/2.0*sum(special.digamma(self.Alpha.b)-S.log(self.Alpha.a))
for d in range(self._D):
Bww = Bww - 1/2.0*( logdet(self.W.cov[d,:,:]) + trace(eye(self.components)-dot(self.W.E2[d,:,:],diag(self.Alpha.E1))))
self._bound = self._bound + Bx - Bss - Bww
self._boundLOG.append(self._bound)
L.debug('CVBFA bound = %.2f'%self._bound)
return self._bound
def getPrediction(self):
L.info('CVBFA getPrediction')
#make sure we always produce a prediction even if not intialized
if self.iterationCount==0:
return CGauss(E1=S.array([0]),prec=S.array([0]))
p = dot(self.S.E1,self.W.E1.T)
E1 = real(p)
prec = ones(shape = self.Z.E1.shape)*self.Eps.E1
return CGauss(E1=E1,prec=prec)
def residuals(self):
L.info('CVBFA residuals')
return self.Z.E1 - self.getPrediction().E1
def logdet(M):
UC = linalg.cholesky(M)
return 2*sum(S.log(diag(UC)))