forked from mxmaxi007/Variable_Length_Emotion_Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDemo.py
271 lines (190 loc) · 9.45 KB
/
Demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import sys
import os
import math
import re
import time
import shutil
import numpy as np
import tensorflow as tf
from PIL import Image
import Preprocess.Spectrogram as Spectrogram
import Preprocess.Load_Data as Load_Data
import Preprocess.Normalization as Normalization
import Model.CNN_Const as CNN_Const
import Model.CNN_LSTM_Const as CNN_LSTM_Const
import Model.CNN_LSTM_Attention_Const as CNN_LSTM_Attention_Const
import Model.CNN_RNN_Var as CNN_RNN_Var
import Model.CNN_RNN_Const as CNN_RNN_Const
import Metrics.Accuracy as Accuracy
name = "3_339"
def Select_Right():
spectrogram_vec_dir_path = "/Users/max/Downloads/Data/Personal/interspeech18/fail_npy";
model_dir = "/Users/max/Downloads/Data/Personal/interspeech18/CNN_RNN_Var_3/model";
right_spectrogram_dir_path = "/Users/max/Downloads/Data/Personal/interspeech18/right_npy";
shutil.rmtree(right_spectrogram_dir_path, ignore_errors=True);
os.mkdir(right_spectrogram_dir_path);
x_test = [];
y_test = [];
spectrogram_vec_dir = os.listdir(spectrogram_vec_dir_path);
with tf.Session() as sess:
info = dict();
tf.saved_model.loader.load(sess, ["CNN_RNN_Var"], model_dir);
classes = sess.graph.get_tensor_by_name("classes:0");
probabilities = sess.graph.get_tensor_by_name("probabilities:0");
prediction = {"classes": classes, "probabilities": probabilities};
for file_name in spectrogram_vec_dir:
file_path = os.path.join(spectrogram_vec_dir_path, file_name);
if os.path.isfile(file_path) and re.match(".*.npy", file_name):
spectrogram_vec = np.load(file_path);
spectrogram = np.concatenate(spectrogram_vec, axis=0);
label = int(file_name[0]);
info = sess.run(prediction, feed_dict={
"inputs:0": spectrogram.reshape(1, spectrogram.shape[0], spectrogram.shape[1], spectrogram.shape[2]),
"dropout/keep_prob:0": 1.0});
predict = info["classes"][0];
if predict == label:
right_spectrogram_path = os.path.join(right_spectrogram_dir_path, file_name);
np.save(right_spectrogram_path, spectrogram);
def Var_CNN_Output():
spectrogram_path = "/Users/max/Downloads/Data/Personal/interspeech18/right_npy/" + name + ".npy";
model_dir = "/Users/max/Downloads/Data/Personal/interspeech18/CNN_RNN_Var_3/model";
spectrogram = np.load(spectrogram_path);
spectrogram = spectrogram.reshape(spectrogram.shape[0], spectrogram.shape[1], 1);
print(spectrogram.shape);
emo_dict = {0: "Neutral", 1: "Angry", 2: "Happy", 3: "Sad"};
emo_num = 4;
tf.reset_default_graph();
y_predict = [];
with tf.Session() as sess:
tf.saved_model.loader.load(sess, ["CNN_RNN_Var"], model_dir);
h_pool2 = sess.graph.get_tensor_by_name("pool2/MaxPool:0");
cnn_out = sess.run(h_pool2, feed_dict={
"inputs:0": spectrogram.reshape(1, spectrogram.shape[0], spectrogram.shape[1], spectrogram.shape[2])
});
spectrogram[np.where(spectrogram < 0)] = 0;
spectrogram = spectrogram.reshape(spectrogram.shape[0], spectrogram.shape[1]);
input_min = spectrogram.min();
input_max = spectrogram.max();
spectrogram = 256 - 256 * (spectrogram - input_min) / (input_max - input_min);
input_im = Image.fromarray(spectrogram.T[::-1, :]);
# output_im.show();
if input_im.mode != 'RGB':
input_im = input_im.convert('RGB');
input_im.save("/Users/max/Downloads/Data/Personal/interspeech18/NN_Output/spectrogram_" + name + ".jpg");
cnn_out = cnn_out.sum(axis=3).reshape(cnn_out.shape[1], cnn_out.shape[2]);
output_min = cnn_out.min();
output_max = cnn_out.max();
cnn_out = 256 - 256 * (cnn_out - output_min) / (output_max - output_min);
# input_im = Image.fromarray(spectrogram.T);
# input_im.show();
output_im = Image.fromarray(cnn_out.T[::-1, :]);
# output_im.show();
if output_im.mode != 'RGB':
output_im = output_im.convert('RGB');
output_im.save("/Users/max/Downloads/Data/Personal/interspeech18/NN_Output/cnn_out_var_"+ name + ".jpg");
def Image_Convert():
# print(info["probabilities"][0]);
spectrogram_img_path = "/Users/max/Downloads/Data/Personal/interspeech18/Test_Data/spectrogram.png";
spectrogram_im = Image.open(spectrogram_img_path);
spectrogram_im_mat = np.asarray(spectrogram_im.convert("L"));
spectrogram_im = Image.fromarray(spectrogram_im_mat[:, ::-1]);
spectrogram_im.save("/Users/max/Downloads/Data/Personal/interspeech18/Test_Data/spectrogram.jpg");
def Const_CNN_Output():
spectrogram_vec_path = "/Users/max/Downloads/Data/Personal/interspeech18/fail_npy/" + name + ".npy";
model_dir = "/Users/max/Downloads/Data/Personal/interspeech18/CNN_RNN_Const_3/model";
spectrogram_vec = np.load(spectrogram_vec_path);
spectrogram_vec = spectrogram_vec.reshape(spectrogram_vec.shape[0], spectrogram_vec.shape[1],
spectrogram_vec.shape[2], 1);
tf.reset_default_graph();
with tf.Session() as sess:
tf.saved_model.loader.load(sess, ["CNN_RNN_Const"], model_dir);
h_pool2 = sess.graph.get_tensor_by_name("pool2/MaxPool:0");
cnn_out = sess.run(h_pool2, feed_dict={
"inputs:0": spectrogram_vec
});
# print(cnn_out.shape);
cnn_out = cnn_out.sum(axis=3);
output_min = cnn_out.min();
output_max= cnn_out.max();
cnn_out = 256 - 256 * (cnn_out - output_min) / (output_max - output_min);
for i in range(len(cnn_out)):
output_im = Image.fromarray(cnn_out[i].T[::-1, :]);
# output_im.show();
if output_im.mode != 'RGB':
output_im = output_im.convert('RGB');
output_im.save("/Users/max/Downloads/Data/Personal/interspeech18/NN_Output/cnn_out_const_" + name + "_" + str(i) + ".jpg");
def Var_RNN_Output():
spectrogram_path = "/Users/max/Downloads/Data/Personal/interspeech18/var_right_npy/" + name + ".npy";
model_dir = "/Users/max/Downloads/Data/Personal/interspeech18/CNN_RNN_Var_3/model";
spectrogram = np.load(spectrogram_path);
spectrogram = spectrogram.reshape(spectrogram.shape[0], spectrogram.shape[1], 1);
print(spectrogram.shape);
emo_dict = {0: "Neutral", 1: "Angry", 2: "Happy", 3: "Sad"};
emo_num = 4;
y_predict = [];
tf.reset_default_graph();
with tf.Session() as sess:
tf.saved_model.loader.load(sess, ["CNN_RNN_Var"], model_dir);
rnn = sess.graph.get_tensor_by_name("rnn1/ReverseSequence:0");
rnn_out = sess.run(rnn, feed_dict={
"inputs:0": spectrogram.reshape(1, spectrogram.shape[0], spectrogram.shape[1], spectrogram.shape[2])
});
spectrogram[np.where(spectrogram < 0)] = 0;
spectrogram = spectrogram.reshape(spectrogram.shape[0], spectrogram.shape[1]);
input_min = spectrogram.min();
input_max = spectrogram.max();
spectrogram = 256 - 256 * (spectrogram - input_min) / (input_max - input_min);
input_im = Image.fromarray(spectrogram.T[::-1, :]);
# output_im.show();
if input_im.mode != 'RGB':
input_im = input_im.convert('RGB');
input_im.save("/Users/max/Downloads/Data/Personal/interspeech18/NN_Output/spectrogram_" + name + ".jpg");
rnn_out = rnn_out.reshape(rnn_out.shape[1], rnn_out.shape[2]);
output_min = rnn_out.min();
output_max = rnn_out.max();
rnn_out = 256 - 256 * (rnn_out - output_min) / (output_max - output_min);
# input_im = Image.fromarray(spectrogram.T);
# input_im.show();
output_im = Image.fromarray(rnn_out.T);
# output_im.show();
if output_im.mode != 'RGB':
output_im = output_im.convert('RGB');
output_im.save("/Users/max/Downloads/Data/Personal/interspeech18/NN_Output/rnn_out_var_" + name + ".jpg");
def Const_RNN_Output():
spectrogram_vec_path = "/Users/max/Downloads/Data/Personal/interspeech18/fail_npy/" + name + ".npy";
model_dir = "/Users/max/Downloads/Data/Personal/interspeech18/CNN_RNN_Const_3/model";
spectrogram_vec = np.load(spectrogram_vec_path);
spectrogram_vec = spectrogram_vec.reshape(spectrogram_vec.shape[0], spectrogram_vec.shape[1],
spectrogram_vec.shape[2], 1);
tf.reset_default_graph();
with tf.Session() as sess:
tf.saved_model.loader.load(sess, ["CNN_RNN_Const"], model_dir);
rnn = sess.graph.get_tensor_by_name("rnn1/ReverseV2:0");
rnn_out = sess.run(rnn, feed_dict={
"inputs:0": spectrogram_vec
});
# print(cnn_out.shape);
output_min = rnn_out.min();
output_max= rnn_out.max();
rnn_out = 256 - 256 * (rnn_out - output_min) / (output_max - output_min);
for i in range(len(rnn_out)):
output_im = Image.fromarray(rnn_out[i].T);
# output_im.show();
if output_im.mode != 'RGB':
output_im = output_im.convert('RGB');
output_im.save("/Users/max/Downloads/Data/Personal/interspeech18/NN_Output/rnn_out_const_" + name + "_" + str(i) + ".jpg");
def main():
# if len(sys.argv) != 7:
# print('Usage: python3 ' + sys.argv[0] + ' wav_dir_path spectrogram_dir_path output_dir test_session classifer_type spectrogram_type\n');
# sys.exit(2);
start = time.time();
# Var_CNN_Output();
# Const_CNN_Output();
# Image_Convert();
# Select_Right();
Var_RNN_Output();
# Const_RNN_Output();
end = time.time();
print("Total Time: {}s".format(end - start));
if __name__ == "__main__":
main();