-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathefficient-det.yml
66 lines (61 loc) · 4.37 KB
/
efficient-det.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
project_name : SSLAD-2D
train_set : train
val_set : val
num_gpus : 0
compound_coef : 0 # coefficients of efficientdet or model size, choices 0,1,2,3,4,5,6,7
mean : [ 0.485, 0.456, 0.406 ] # mean and std in RGB order, actually this part should remain unchanged as long as your dataset is similar to coco.
std : [ 0.229, 0.224, 0.225 ]
anchors_scales: '[2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]' # this anchor is adapted to the dataset
anchors_ratios: '[(0.7, 1.4), (1.0, 1.0), (1.5, 0.7)]'
# saving results to wandb and local dir
wandb : False # save results to wandb, set False if you don't want to log to wandb
project : SSLAD-2D # metrics will be log to wandb {project} and run {run_name}
run_name : efficient-det-0 # results will be saved to runs/project/run_name in local directory
# training configuration
train :
num_workers : 10 # num_workers of dataloader
batch_size : 10 # number of images per batch among all devices
head_only : False # whether finetunes only the regressor and the classifier,useful in early stage convergence or small/easy dataset
lr : 0.0001 # leaning rate
optim : adamw # select optimizer for training, suggest using admaw until the very final stage then switch to sgd
num_epochs : 100
val_interval : 1 # Number of epoches between validation phases
save_interval : 500 # Number of steps between saving
es_min_delta : 0.0 # Early stoppins parameter: minimum change loss to qualify as an improvement
es_patience : 0 # Early stopping parameter: number of epochs with no improvement after which training will be stopped. Set to 0 to disable this technique.
data_path : ./datasets/ # the root folder of dataset
#log_path : logs
load_weights : weights/efficientdet-d0.pth # whether to load weights from a checkpoint, set None to initialize, set \'last\' to load last checkpoint')
saved_path : runs # root path to save the training results
debug : False # whether visualize the predicted boxes of training,'the output images will be in test/')
# val configuration
test :
weight : weights/efficientdet-d0.pth # efficientdet-d0.pth, efficientdet-d1.pth, efficientdet-d2.pth, efficientdet-d3.pth, efficientdet-d4.pth
num_workers : 2 # num_workers of dataloader
batch_size : 10 # number of images per batch among all devices
conf_thres : 0.5
nms_thres : 0.5
device : cpu
use_float16 : False
# inference configuration
inference :
weight : weights/efficientdet-d0.pth # efficientdet-d0.pth, efficientdet-d1.pth, efficientdet-d2.pth, efficientdet-d3.pth, efficientdet-d4.pth
source : datasets/demo.jpg # image or video to run inference
conf_thres : 0.5
nms_thres : 0.5
show : False
save : True
use_float16 : False
# classes
obj_list : [ 'Pedestrian', 'Cyclist', 'Car', 'Truck', 'Tram', 'Tricycle' ]
# coco
# obj_list: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
# 'fire hydrant', '', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
# 'cow', 'elephant', 'bear', 'zebra', 'giraffe', '', 'backpack', 'umbrella', '', '', 'handbag', 'tie',
# 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
# 'skateboard', 'surfboard', 'tennis racket', 'bottle', '', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
# 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut',
# 'cake', 'chair', 'couch', 'potted plant', 'bed', '', 'dining table', '', '', 'toilet', '', 'tv',
# 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
# 'refrigerator', '', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
# 'toothbrush']