-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain_ptseg.py
443 lines (367 loc) · 19.7 KB
/
main_ptseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
from __future__ import print_function
import os
import argparse
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR
from util.data_util import PartNormalDataset
import torch.nn.functional as F
import torch.nn as nn
from model.GDANet_ptseg import GDANet
import numpy as np
from torch.utils.data import DataLoader
from util.util import to_categorical, compute_overall_iou, IOStream
from tqdm import tqdm
from collections import defaultdict
from torch.autograd import Variable
import random
classes_str = ['aero','bag','cap','car','chair','ear','guitar','knife','lamp','lapt','moto','mug','Pistol','rock','stake','table']
def _init_():
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('checkpoints/' + args.exp_name):
os.makedirs('checkpoints/' + args.exp_name)
if not args.eval: # backup the running files
os.system('cp main_cls.py checkpoints' + '/' + args.exp_name + '/' + 'main.py.backup')
os.system('cp model/GDANet_ptseg.py checkpoints' + '/' + args.exp_name + '/' + 'GDANet_ptseg.py.backup')
os.system('cp util.GDANet_util.py checkpoints' + '/' + args.exp_name + '/' + 'GDANet_util.py.backup')
os.system('cp util.data_util.py checkpoints' + '/' + args.exp_name + '/' + 'data_util.py.backup')
def weight_init(m):
if isinstance(m, torch.nn.Linear):
torch.nn.init.xavier_normal_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, torch.nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, torch.nn.Conv1d):
torch.nn.init.xavier_normal_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, torch.nn.BatchNorm2d):
torch.nn.init.constant_(m.weight, 1)
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, torch.nn.BatchNorm1d):
torch.nn.init.constant_(m.weight, 1)
torch.nn.init.constant_(m.bias, 0)
def train(args, io):
# ============= Model ===================
num_part = 50
device = torch.device("cuda" if args.cuda else "cpu")
model = GDANet(num_part).to(device)
io.cprint(str(model))
model.apply(weight_init)
model = nn.DataParallel(model)
print("Let's use", torch.cuda.device_count(), "GPUs!")
'''Resume or not'''
if args.resume:
state_dict = torch.load("checkpoints/%s/best_insiou_model.pth" % args.exp_name,
map_location=torch.device('cpu'))['model']
for k in state_dict.keys():
if 'module' not in k:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k in state_dict:
new_state_dict['module.' + k] = state_dict[k]
state_dict = new_state_dict
break
model.load_state_dict(state_dict)
print("Resume training model...")
print(torch.load("checkpoints/%s/best_insiou_model.pth" % args.exp_name).keys())
else:
print("Training from scratch...")
# =========== Dataloader =================
train_data = PartNormalDataset(npoints=args.num_points, split='trainval', normalize=False)
print("The number of training data is:%d", len(train_data))
test_data = PartNormalDataset(npoints=args.num_points, split='test', normalize=False)
print("The number of test data is:%d", len(test_data))
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=6,
drop_last=True)
test_loader = DataLoader(test_data, batch_size=args.test_batch_size, shuffle=False, num_workers=6,
drop_last=False)
# ============= Optimizer ================
if args.use_sgd:
print("Use SGD")
opt = optim.SGD(model.parameters(), lr=args.lr*100, momentum=args.momentum, weight_decay=0)
else:
print("Use Adam")
opt = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
if args.scheduler == 'cos':
print("Use CosLR")
scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr if args.use_sgd else args.lr / 100)
else:
print("Use StepLR")
scheduler = StepLR(opt, step_size=args.step, gamma=0.5)
# ============= Training =================
best_acc = 0
best_class_iou = 0
best_instance_iou = 0
num_part = 50
num_classes = 16
for epoch in range(args.epochs):
train_epoch(train_loader, model, opt, scheduler, epoch, num_part, num_classes, io)
test_metrics, total_per_cat_iou = test_epoch(test_loader, model, epoch, num_part, num_classes, io)
# 1. when get the best accuracy, save the model:
if test_metrics['accuracy'] > best_acc:
best_acc = test_metrics['accuracy']
io.cprint('Max Acc:%.5f' % best_acc)
state = {
'model': model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
'optimizer': opt.state_dict(), 'epoch': epoch, 'test_acc': best_acc}
torch.save(state, 'checkpoints/%s/best_acc_model.pth' % args.exp_name)
# 2. when get the best instance_iou, save the model:
if test_metrics['shape_avg_iou'] > best_instance_iou:
best_instance_iou = test_metrics['shape_avg_iou']
io.cprint('Max instance iou:%.5f' % best_instance_iou)
state = {
'model': model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
'optimizer': opt.state_dict(), 'epoch': epoch, 'test_instance_iou': best_instance_iou}
torch.save(state, 'checkpoints/%s/best_insiou_model.pth' % args.exp_name)
# 3. when get the best class_iou, save the model:
# first we need to calculate the average per-class iou
class_iou = 0
for cat_idx in range(16):
class_iou += total_per_cat_iou[cat_idx]
avg_class_iou = class_iou / 16
if avg_class_iou > best_class_iou:
best_class_iou = avg_class_iou
# print the iou of each class:
for cat_idx in range(16):
io.cprint(classes_str[cat_idx] + ' iou: ' + str(total_per_cat_iou[cat_idx]))
io.cprint('Max class iou:%.5f' % best_class_iou)
state = {
'model': model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
'optimizer': opt.state_dict(), 'epoch': epoch, 'test_class_iou': best_class_iou}
torch.save(state, 'checkpoints/%s/best_clsiou_model.pth' % args.exp_name)
# report best acc, ins_iou, cls_iou
io.cprint('Final Max Acc:%.5f' % best_acc)
io.cprint('Final Max instance iou:%.5f' % best_instance_iou)
io.cprint('Final Max class iou:%.5f' % best_class_iou)
# save last model
state = {
'model': model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
'optimizer': opt.state_dict(), 'epoch': args.epochs - 1, 'test_iou': best_instance_iou}
torch.save(state, 'checkpoints/%s/model_ep%d.pth' % (args.exp_name, args.epochs))
def train_epoch(train_loader, model, opt, scheduler, epoch, num_part, num_classes, io):
train_loss = 0.0
count = 0.0
accuracy = []
shape_ious = 0.0
metrics = defaultdict(lambda: list())
model.train()
for batch_id, (points, label, target, norm_plt) in tqdm(enumerate(train_loader), total=len(train_loader), smoothing=0.9):
batch_size, num_point, _ = points.size()
points, label, target, norm_plt = Variable(points.float()), Variable(label.long()), Variable(target.long()), \
Variable(norm_plt.float())
points = points.transpose(2, 1)
norm_plt = norm_plt.transpose(2, 1)
points, label, target, norm_plt = points.cuda(non_blocking=True), label.squeeze(1).cuda(non_blocking=True), \
target.cuda(non_blocking=True), norm_plt.cuda(non_blocking=True)
# target: b,n
seg_pred = model(points, norm_plt, to_categorical(label, num_classes)) # seg_pred: b,n,50
# instance iou without considering the class average at each batch_size:
batch_shapeious = compute_overall_iou(seg_pred, target, num_part) # list of of current batch_iou:[iou1,iou2,...,iou#b_size]
# total iou of current batch in each process:
batch_shapeious = seg_pred.new_tensor([np.sum(batch_shapeious)], dtype=torch.float64) # same device with seg_pred!!!
# loss
seg_pred = seg_pred.contiguous().view(-1, num_part) # b*n,50
target = target.view(-1, 1)[:, 0] # b*n
loss = F.nll_loss(seg_pred, target)
# loss backward
loss = torch.mean(loss)
opt.zero_grad()
loss.backward()
opt.step()
# accuracy
pred_choice = seg_pred.contiguous().data.max(1)[1] # b*n
correct = pred_choice.eq(target.contiguous().data).sum() # torch.int64: total number of correct-predict pts
# sum
shape_ious += batch_shapeious.item() # count the sum of ious in each iteration
count += batch_size # count the total number of samples in each iteration
train_loss += loss.item() * batch_size
accuracy.append(correct.item()/(batch_size * num_point)) # append the accuracy of each iteration
# Note: We do not need to calculate per_class iou during training
if args.scheduler == 'cos':
scheduler.step()
elif args.scheduler == 'step':
if opt.param_groups[0]['lr'] > 0.9e-5:
scheduler.step()
if opt.param_groups[0]['lr'] < 0.9e-5:
for param_group in opt.param_groups:
param_group['lr'] = 0.9e-5
io.cprint('Learning rate: %f' % opt.param_groups[0]['lr'])
metrics['accuracy'] = np.mean(accuracy)
metrics['shape_avg_iou'] = shape_ious * 1.0 / count
outstr = 'Train %d, loss: %f, train acc: %f, train ins_iou: %f' % (epoch+1, train_loss * 1.0 / count,
metrics['accuracy'], metrics['shape_avg_iou'])
io.cprint(outstr)
def test_epoch(test_loader, model, epoch, num_part, num_classes, io):
test_loss = 0.0
count = 0.0
accuracy = []
shape_ious = 0.0
final_total_per_cat_iou = np.zeros(16).astype(np.float32)
final_total_per_cat_seen = np.zeros(16).astype(np.int32)
metrics = defaultdict(lambda: list())
model.eval()
# label_size: b, means each sample has one corresponding class
for batch_id, (points, label, target, norm_plt) in tqdm(enumerate(test_loader), total=len(test_loader), smoothing=0.9):
batch_size, num_point, _ = points.size()
points, label, target, norm_plt = Variable(points.float()), Variable(label.long()), Variable(target.long()), \
Variable(norm_plt.float())
points = points.transpose(2, 1)
norm_plt = norm_plt.transpose(2, 1)
points, label, target, norm_plt = points.cuda(non_blocking=True), label.squeeze(1).cuda(non_blocking=True), \
target.cuda(non_blocking=True), norm_plt.cuda(non_blocking=True)
seg_pred = model(points, norm_plt, to_categorical(label, num_classes)) # b,n,50
# instance iou without considering the class average at each batch_size:
batch_shapeious = compute_overall_iou(seg_pred, target, num_part) # [b]
# per category iou at each batch_size:
for shape_idx in range(seg_pred.size(0)): # sample_idx
cur_gt_label = label[shape_idx] # label[sample_idx], denotes current sample belongs to which cat
final_total_per_cat_iou[cur_gt_label] += batch_shapeious[shape_idx] # add the iou belongs to this cat
final_total_per_cat_seen[cur_gt_label] += 1 # count the number of this cat is chosen
# total iou of current batch in each process:
batch_ious = seg_pred.new_tensor([np.sum(batch_shapeious)], dtype=torch.float64) # same device with seg_pred!!!
# prepare seg_pred and target for later calculating loss and acc:
seg_pred = seg_pred.contiguous().view(-1, num_part)
target = target.view(-1, 1)[:, 0]
# Loss
loss = F.nll_loss(seg_pred.contiguous(), target.contiguous())
# accuracy:
pred_choice = seg_pred.data.max(1)[1] # b*n
correct = pred_choice.eq(target.data).sum() # torch.int64: total number of correct-predict pts
loss = torch.mean(loss)
shape_ious += batch_ious.item() # count the sum of ious in each iteration
count += batch_size # count the total number of samples in each iteration
test_loss += loss.item() * batch_size
accuracy.append(correct.item() / (batch_size * num_point)) # append the accuracy of each iteration
for cat_idx in range(16):
if final_total_per_cat_seen[cat_idx] > 0: # indicating this cat is included during previous iou appending
final_total_per_cat_iou[cat_idx] = final_total_per_cat_iou[cat_idx] / final_total_per_cat_seen[cat_idx] # avg class iou across all samples
metrics['accuracy'] = np.mean(accuracy)
metrics['shape_avg_iou'] = shape_ious * 1.0 / count
outstr = 'Test %d, loss: %f, test acc: %f test ins_iou: %f' % (epoch + 1, test_loss * 1.0 / count,
metrics['accuracy'], metrics['shape_avg_iou'])
io.cprint(outstr)
return metrics, final_total_per_cat_iou
def test(args, io):
# Dataloader
test_data = PartNormalDataset(npoints=args.num_points, split='test', normalize=False)
print("The number of test data is:%d", len(test_data))
test_loader = DataLoader(test_data, batch_size=args.test_batch_size, shuffle=False, num_workers=6,
drop_last=False)
# Try to load models
num_part = 50
device = torch.device("cuda" if args.cuda else "cpu")
model = GDANet(num_part).to(device)
io.cprint(str(model))
from collections import OrderedDict
state_dict = torch.load("checkpoints/%s/best_%s_model.pth" % (args.exp_name, args.model_type),
map_location=torch.device('cpu'))['model']
new_state_dict = OrderedDict()
for layer in state_dict:
new_state_dict[layer.replace('module.', '')] = state_dict[layer]
model.load_state_dict(new_state_dict)
model.eval()
num_part = 50
num_classes = 16
metrics = defaultdict(lambda: list())
hist_acc = []
shape_ious = []
total_per_cat_iou = np.zeros((16)).astype(np.float32)
total_per_cat_seen = np.zeros((16)).astype(np.int32)
for batch_id, (points, label, target, norm_plt) in tqdm(enumerate(test_loader), total=len(test_loader), smoothing=0.9):
batch_size, num_point, _ = points.size()
points, label, target, norm_plt = Variable(points.float()), Variable(label.long()), Variable(target.long()), Variable(norm_plt.float())
points = points.transpose(2, 1)
norm_plt = norm_plt.transpose(2, 1)
points, label, target, norm_plt = points.cuda(non_blocking=True), label.squeeze().cuda(
non_blocking=True), target.cuda(non_blocking=True), norm_plt.cuda(non_blocking=True)
with torch.no_grad():
seg_pred = model(points, norm_plt, to_categorical(label, num_classes)) # b,n,50
# instance iou without considering the class average at each batch_size:
batch_shapeious = compute_overall_iou(seg_pred, target, num_part) # [b]
shape_ious += batch_shapeious # iou +=, equals to .append
# per category iou at each batch_size:
for shape_idx in range(seg_pred.size(0)): # sample_idx
cur_gt_label = label[shape_idx] # label[sample_idx]
total_per_cat_iou[cur_gt_label] += batch_shapeious[shape_idx]
total_per_cat_seen[cur_gt_label] += 1
# accuracy:
seg_pred = seg_pred.contiguous().view(-1, num_part)
target = target.view(-1, 1)[:, 0]
pred_choice = seg_pred.data.max(1)[1]
correct = pred_choice.eq(target.data).cpu().sum()
metrics['accuracy'].append(correct.item() / (batch_size * num_point))
hist_acc += metrics['accuracy']
metrics['accuracy'] = np.mean(hist_acc)
metrics['shape_avg_iou'] = np.mean(shape_ious)
for cat_idx in range(16):
if total_per_cat_seen[cat_idx] > 0:
total_per_cat_iou[cat_idx] = total_per_cat_iou[cat_idx] / total_per_cat_seen[cat_idx]
# First we need to calculate the iou of each class and the avg class iou:
class_iou = 0
for cat_idx in range(16):
class_iou += total_per_cat_iou[cat_idx]
io.cprint(classes_str[cat_idx] + ' iou: ' + str(total_per_cat_iou[cat_idx])) # print the iou of each class
avg_class_iou = class_iou / 16
outstr = 'Test :: test acc: %f test class mIOU: %f, test instance mIOU: %f' % (metrics['accuracy'], avg_class_iou, metrics['shape_avg_iou'])
io.cprint(outstr)
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser(description='3D Shape Part Segmentation')
parser.add_argument('--exp_name', type=str, default='GDANet', metavar='N',
help='Name of the experiment')
parser.add_argument('--batch_size', type=int, default=64, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--test_batch_size', type=int, default=32, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--epochs', type=int, default=350, metavar='N',
help='number of episode to train')
parser.add_argument('--use_sgd', type=bool, default=False,
help='Use SGD')
parser.add_argument('--scheduler', type=str, default='step',
help='lr scheduler')
parser.add_argument('--step', type=int, default=40,
help='lr decay step')
parser.add_argument('--lr', type=float, default=0.003, metavar='LR',
help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no_cuda', type=bool, default=False,
help='enables CUDA training')
parser.add_argument('--manual_seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--eval', type=bool, default=False,
help='evaluate the model')
parser.add_argument('--num_points', type=int, default=2048,
help='num of points to use')
parser.add_argument('--resume', type=bool, default=False,
help='Resume training or not')
parser.add_argument('--model_type', type=str, default='insiou',
help='choose to test the best insiou/clsiou/acc model (options: insiou, clsiou, acc)')
args = parser.parse_args()
_init_()
if not args.eval:
io = IOStream('checkpoints/' + args.exp_name + '/%s_train.log' % (args.exp_name))
else:
io = IOStream('checkpoints/' + args.exp_name + '/%s_test.log' % (args.exp_name))
io.cprint(str(args))
if args.manual_seed is not None:
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
io.cprint('Using GPU')
if args.manual_seed is not None:
torch.cuda.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
else:
io.cprint('Using CPU')
if not args.eval:
train(args, io)
else:
test(args, io)