-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathl2r_heatmorph_utils.py
435 lines (356 loc) · 16.5 KB
/
l2r_heatmorph_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import nibabel as nib
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import os
import math
import struct
import csv
import time
def gpu_usage():
print('gpu usage (current/max): {:.2f} / {:.2f} GB'.format(torch.cuda.memory_allocated()*1e-9, torch.cuda.max_memory_allocated()*1e-9))
def pdist_squared(x):
xx = (x**2).sum(dim=1).unsqueeze(2)
yy = xx.permute(0, 2, 1)
dist = xx + yy - 2.0 * torch.bmm(x.permute(0, 2, 1), x)
dist[dist != dist] = 0
dist = torch.clamp(dist, 0.0, np.inf)
return dist
def MINDSSC(img, radius=2, dilation=2):
# see http://mpheinrich.de/pub/miccai2013_943_mheinrich.pdf for details on the MIND-SSC descriptor
# kernel size
kernel_size = radius * 2 + 1
# define start and end locations for self-similarity pattern
six_neighbourhood = torch.Tensor([[0,1,1],
[1,1,0],
[1,0,1],
[1,1,2],
[2,1,1],
[1,2,1]]).long()
# squared distances
dist = pdist_squared(six_neighbourhood.t().unsqueeze(0)).squeeze(0)
# define comparison mask
x, y = torch.meshgrid(torch.arange(6), torch.arange(6))
mask = ((x > y).view(-1) & (dist == 2).view(-1))
# build kernel
idx_shift1 = six_neighbourhood.unsqueeze(1).repeat(1,6,1).view(-1,3)[mask,:]
idx_shift2 = six_neighbourhood.unsqueeze(0).repeat(6,1,1).view(-1,3)[mask,:]
mshift1 = torch.zeros(12, 1, 3, 3, 3).cuda()
mshift1.view(-1)[torch.arange(12) * 27 + idx_shift1[:,0] * 9 + idx_shift1[:, 1] * 3 + idx_shift1[:, 2]] = 1
mshift2 = torch.zeros(12, 1, 3, 3, 3).cuda()
mshift2.view(-1)[torch.arange(12) * 27 + idx_shift2[:,0] * 9 + idx_shift2[:, 1] * 3 + idx_shift2[:, 2]] = 1
rpad1 = nn.ReplicationPad3d(dilation)
rpad2 = nn.ReplicationPad3d(radius)
# compute patch-ssd
ssd = F.avg_pool3d(rpad2((F.conv3d(rpad1(img), mshift1, dilation=dilation) - F.conv3d(rpad1(img), mshift2, dilation=dilation)) ** 2), kernel_size, stride=1)
# MIND equation
mind = ssd - torch.min(ssd, 1, keepdim=True)[0]
mind_var = torch.mean(mind, 1, keepdim=True)
mind_var = torch.clamp(mind_var, mind_var.mean()*0.001, mind_var.mean()*1000)
mind /= mind_var
mind = torch.exp(-mind)
#permute to have same ordering as C++ code
mind = mind[:, torch.Tensor([6, 8, 1, 11, 2, 10, 0, 7, 9, 4, 5, 3]).long(), :, :, :]
return mind
def mind_loss(x, y):
return torch.mean( (MINDSSC(x) - MINDSSC(y)) ** 2 )
def pdist(x, p=2):
if p==1:
dist = torch.abs(x.unsqueeze(2) - x.unsqueeze(1)).sum(dim=2)
elif p==2:
xx = (x**2).sum(dim=2).unsqueeze(2)
yy = xx.permute(0, 2, 1)
dist = xx + yy - 2.0 * torch.bmm(x, x.permute(0, 2, 1))
dist[:, torch.arange(dist.shape[1]), torch.arange(dist.shape[2])] = 0
return dist
def pdist2(x, y, p=2):
if p==1:
dist = torch.abs(x.unsqueeze(2) - y.unsqueeze(1)).sum(dim=3)
elif p==2:
xx = (x**2).sum(dim=2).unsqueeze(2)
yy = (y**2).sum(dim=2).unsqueeze(1)
dist = xx + yy - 2.0 * torch.bmm(x, y.permute(0, 2, 1))
return dist
def knn_graph(kpts, k, include_self=False):
B, N, D = kpts.shape
device = kpts.device
dist = pdist(kpts)
ind = (-dist).topk(k + (1 - int(include_self)), dim=-1)[1][:, :, 1 - int(include_self):]
A = torch.zeros(B, N, N).to(device)
A[:, torch.arange(N).repeat(k), ind[0].t().contiguous().view(-1)] = 1
A[:, ind[0].t().contiguous().view(-1), torch.arange(N).repeat(k)] = 1
return ind, dist*A, A
def laplacian(kpts, k, lambd, sigma=0):
_, dist, A = knn_graph(kpts, k)
W = lambd * A.squeeze(0)
if sigma > 0:
W = W * torch.exp(- dist.squeeze(0) / (sigma ** 2))
return (torch.diag(W.sum(1) + 1) - W).unsqueeze(0), W.unsqueeze(0)
def dice_coeff(outputs, labels, max_label):
dice = torch.FloatTensor(max_label-1).fill_(0)
for label_num in range(1, max_label):
iflat = (outputs==label_num).view(-1).float()
tflat = (labels==label_num).view(-1).float()
intersection = torch.mean(iflat * tflat)
dice[label_num-1] = (2. * intersection) / (1e-8 + torch.mean(iflat) + torch.mean(tflat))
return dice
def default_unet_features():
nb_features = [[32, 48, 48, 64], # encoder
[64, 48, 48, 48, 48, 32, 64]] #decoder
return nb_features
class Unet(nn.Module):
"""
A unet architecture. Layer features can be specified directly as a list of encoder and decoder
features or as a single integer along with a number of unet levels. The default network features
per layer (when no options are specified) are:
encoder: [16, 32, 32, 32]
decoder: [32, 32, 32, 32, 32, 16, 16]
"""
def __init__(self,ConvBlock,
inshape=None,
infeats=None,
nb_features=None,
nb_levels=None,
max_pool=2,
feat_mult=1,
nb_conv_per_level=1,
half_res=False):
"""
Parameters:
inshape: Input shape. e.g. (192, 192, 192)
infeats: Number of input features.
nb_features: Unet convolutional features. Can be specified via a list of lists with
the form [[encoder feats], [decoder feats]], or as a single integer.
If None (default), the unet features are defined by the default config described in
the class documentation.
nb_levels: Number of levels in unet. Only used when nb_features is an integer.
Default is None.
feat_mult: Per-level feature multiplier. Only used when nb_features is an integer.
Default is 1.
nb_conv_per_level: Number of convolutions per unet level. Default is 1.
half_res: Skip the last decoder upsampling. Default is False.
"""
super().__init__()
# ensure correct dimensionality
ndims = len(inshape)
assert ndims in [1, 2, 3], 'ndims should be one of 1, 2, or 3. found: %d' % ndims
# cache some parameters
self.half_res = half_res
# default encoder and decoder layer features if nothing provided
if nb_features is None:
nb_features = default_unet_features()
# build feature list automatically
if isinstance(nb_features, int):
if nb_levels is None:
raise ValueError('must provide unet nb_levels if nb_features is an integer')
feats = np.round(nb_features * feat_mult ** np.arange(nb_levels)).astype(int)
nb_features = [
np.repeat(feats[:-1], nb_conv_per_level),
np.repeat(np.flip(feats), nb_conv_per_level)
]
elif nb_levels is not None:
raise ValueError('cannot use nb_levels if nb_features is not an integer')
# extract any surplus (full resolution) decoder convolutions
enc_nf, dec_nf = nb_features
nb_dec_convs = len(enc_nf)
final_convs = dec_nf[nb_dec_convs:]
dec_nf = dec_nf[:nb_dec_convs]
self.nb_levels = int(nb_dec_convs / nb_conv_per_level) + 1
if isinstance(max_pool, int):
max_pool = [max_pool] * self.nb_levels
# cache downsampling / upsampling operations
MaxPooling = getattr(nn, 'MaxPool%dd' % ndims)
self.pooling = [MaxPooling(s) for s in max_pool]
self.upsampling = [nn.Upsample(scale_factor=s, mode='nearest') for s in max_pool]
# configure encoder (down-sampling path)
prev_nf = infeats
encoder_nfs = [prev_nf]
self.encoder = nn.ModuleList()
for level in range(self.nb_levels - 1):
convs = nn.ModuleList()
for conv in range(nb_conv_per_level):
nf = enc_nf[level * nb_conv_per_level + conv]
convs.append(ConvBlock(ndims, prev_nf, nf))
prev_nf = nf
self.encoder.append(convs)
encoder_nfs.append(prev_nf)
# configure decoder (up-sampling path)
encoder_nfs = np.flip(encoder_nfs)
self.decoder = nn.ModuleList()
for level in range(self.nb_levels - 1):
convs = nn.ModuleList()
for conv in range(nb_conv_per_level):
nf = dec_nf[level * nb_conv_per_level + conv]
convs.append(ConvBlock(ndims, prev_nf, nf))
prev_nf = nf
self.decoder.append(convs)
if not half_res or level < (self.nb_levels - 2):
prev_nf += encoder_nfs[level]
# now we take care of any remaining convolutions
self.remaining = nn.ModuleList()
for num, nf in enumerate(final_convs):
self.remaining.append(ConvBlock(ndims, prev_nf, nf))
prev_nf = nf
# cache final number of features
self.final_nf = prev_nf
def forward(self, x):
# encoder forward pass
x_history = [x]
for level, convs in enumerate(self.encoder):
for conv in convs:
x = conv(x)
x_history.append(x)
x = self.pooling[level](x)
# decoder forward pass with upsampling and concatenation
for level, convs in enumerate(self.decoder):
for conv in convs:
x = conv(x)
if not self.half_res or level < (self.nb_levels - 2):
x = self.upsampling[level](x)
x = torch.cat([x, x_history.pop()], dim=1)
# remaining convs at full resolution
for conv in self.remaining:
x = conv(x)
return x
def countParameters(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return params
class TPS:
@staticmethod
def fit(c, f, lambd=0.):
device = c.device
n = c.shape[0]
f_dim = f.shape[1]
U = TPS.u(TPS.d(c, c))
K = U + torch.eye(n, device=device) * lambd
P = torch.ones((n, 4), device=device)
P[:, 1:] = c
v = torch.zeros((n+4, f_dim), device=device)
v[:n, :] = f
A = torch.zeros((n+4, n+4), device=device)
A[:n, :n] = K
A[:n, -4:] = P
A[-4:, :n] = P.t()
theta = torch.solve(v, A)[0]
return theta
@staticmethod
def d(a, b):
ra = (a**2).sum(dim=1).view(-1, 1)
rb = (b**2).sum(dim=1).view(1, -1)
dist = ra + rb - 2.0 * torch.mm(a, b.permute(1, 0))
dist.clamp_(0.0, float('inf'))
return torch.sqrt(dist)
@staticmethod
def u(r):
return (r**2) * torch.log(r + 1e-6)
@staticmethod
def z(x, c, theta):
U = TPS.u(TPS.d(x, c))
w, a = theta[:-4], theta[-4:].unsqueeze(2)
b = torch.matmul(U, w)
return (a[0] + a[1] * x[:, 0] + a[2] * x[:, 1] + a[3] * x[:, 2] + b.t()).t()
def thin_plate_dense(x1, y1, shape, step, lambd=.0, unroll_step_size=2**12):
device = x1.device
D, H, W = shape
D1, H1, W1 = D//step, H//step, W//step
x2 = F.affine_grid(torch.eye(3, 4, device=device).unsqueeze(0), (1, 1, D1, H1, W1), align_corners=True).view(-1, 3)
tps = TPS()
theta = tps.fit(x1[0], y1[0], lambd)
y2 = torch.zeros((1, D1 * H1 * W1, 3), device=device)
N = D1*H1*W1
n = math.ceil(N/unroll_step_size)
for j in range(n):
j1 = j * unroll_step_size
j2 = min((j + 1) * unroll_step_size, N)
y2[0, j1:j2, :] = tps.z(x2[j1:j2], x1[0], theta)
y2 = y2.view(1, D1, H1, W1, 3).permute(0, 4, 1, 2, 3)
y2 = F.interpolate(y2, (D, H, W), mode='trilinear', align_corners=True).permute(0, 2, 3, 4, 1)
return y2
def get_datasets(nomind=False):
H = 192
W = 192
D = 208
import csv
import struct
import time
keypts_all_mov = []
keypts_all_fix = []
mind_ch = 12
if(nomind):
mind_ch = 1
mind_all_mov = torch.zeros(30,mind_ch,H//2,W//2,D//2).pin_memory()
mind_all_fix = torch.zeros(30,mind_ch,H//2,W//2,D//2).pin_memory()
img_all_mov = torch.zeros(30,1,H,W,D).pin_memory()
img_all_fix = torch.zeros(30,1,H,W,D).pin_memory()
mask_all_mov = torch.zeros(30,1,H,W,D).pin_memory()
mask_all_fix = torch.zeros(30,1,H,W,D).pin_memory()
time_mind = 0
for ii,i in enumerate((1,7,8,14,18,20,21,28,1,2,3,4,5,6,7,8,9,10,1,2,3,5,6,8,9,11,12,14,17,19)):
if(ii<8):
folder = 'EMPIRE10/'; dat = '.dat';
else:
folder = 'COPDgene/'; dat = '_insp.dat';
if(ii>=18):
folder = 'l2r_lung_ct/training/scans/';
if(ii<18):
mask_all_fix[ii] = torch.from_numpy(nib.load(folder+'/case_'+str(i).zfill(2)+'_exp_mask.nii.gz').get_fdata()).float()
mask_all_mov[ii] = torch.from_numpy(nib.load(folder+'/case_'+str(i).zfill(2)+'_insp_mask.nii.gz').get_fdata()).float()
if(ii>=18):
mask_all_fix[ii] = torch.from_numpy(nib.load('l2r_lung_ct/training/lungMasks/case_'+str(i).zfill(3)+'_exp.nii.gz').get_fdata()).float()
mask_all_mov[ii] = torch.from_numpy(nib.load('l2r_lung_ct/training/lungMasks/case_'+str(i).zfill(3)+'_insp.nii.gz').get_fdata()).float()
zfill = 2
if(ii>=18):
zfill = 3
img_all_fix[ii] = torch.from_numpy(nib.load(folder+'/case_'+str(i).zfill(zfill)+'_exp.nii.gz').get_fdata()).float()
img_all_mov[ii] = torch.from_numpy(nib.load(folder+'/case_'+str(i).zfill(zfill)+'_insp.nii.gz').get_fdata()).float()
if(ii<18):
img_all_fix[ii] += 1000
img_all_mov[ii] += 1000
if(ii<18):
with open(folder+'/keypoints/case_'+str(i).zfill(2)+dat, 'rb') as content_file:
content = content_file.read()
corrfield = torch.from_numpy(np.array(struct.unpack('f'*(len(content)//4),content))).reshape(-1,6).float()
else:
corrfield = torch.empty(0,6)
with open('l2r_lung_ct/keypoints/case_0'+str(i).zfill(2)+'.csv', newline='') as csvfile:
fread = csv.reader(csvfile, delimiter=',', quotechar='|')
for row in fread:
corrfield = torch.cat((corrfield,torch.from_numpy(np.array(row).astype('float32')).float().view(1,6)),0)
keypts_fix = torch.stack((corrfield[:,2+0]/207*2-1,corrfield[:,1+0]/191*2-1,corrfield[:,0+0]/191*2-1),1).cuda()
keypts_mov = torch.stack((corrfield[:,2+3]/207*2-1,corrfield[:,1+3]/191*2-1,corrfield[:,0+3]/191*2-1),1).cuda()
if((ii>=8)&(ii<18)):
keypts_mov = torch.stack((corrfield[:,2+0]/207*2-1,corrfield[:,1+0]/191*2-1,corrfield[:,0+0]/191*2-1),1).cuda()
keypts_fix = torch.stack((corrfield[:,2+3]/207*2-1,corrfield[:,1+3]/191*2-1,corrfield[:,0+3]/191*2-1),1).cuda()
keypts_all_mov.append(keypts_mov)
keypts_all_fix.append(keypts_fix)
mean_mask = F.grid_sample(mask_all_fix[ii:ii+1],keypts_fix.view(1,-1,1,1,3).cpu()).mean()+F.grid_sample(mask_all_mov[ii:ii+1],keypts_mov.view(1,-1,1,1,3).cpu()).mean()
if(mean_mask<1.97):
print(ii,i,'mean_mask',mean_mask)
grid_sp = 2
torch.cuda.synchronize()
t0 = time.time()
#compute MIND descriptors and downsample (using average pooling)
with torch.no_grad():
with torch.cuda.amp.autocast():
if(nomind):
mind_fix_ = mask_all_fix[ii].view(1,1,H,W,D).cuda().float()*\
(img_all_fix[ii].view(1,1,H,W,D).cuda().float()/500)
mind_mov_ = mask_all_mov[ii].view(1,1,H,W,D).cuda().float()*\
(img_all_mov[ii].view(1,1,H,W,D).cuda().float()/500)
else:
mind_fix_ = mask_all_fix[ii].view(1,1,H,W,D).cuda().half()*\
MINDSSC(img_all_fix[ii].view(1,1,H,W,D).cuda(),1,2).half()
mind_mov_ = mask_all_mov[ii].view(1,1,H,W,D).cuda().half()*\
MINDSSC(img_all_mov[ii].view(1,1,H,W,D).cuda(),1,2).half()
mind_fix = F.avg_pool3d(mind_fix_,grid_sp,stride=grid_sp)
mind_mov = F.avg_pool3d(mind_mov_,grid_sp,stride=grid_sp)
torch.cuda.synchronize()
t1 = time.time()
time_mind += (t1-t0)
mind_all_fix[ii] = mind_fix.cpu()
mind_all_mov[ii] = mind_mov.cpu()
print('mind computation',time_mind/30,'sec')
return keypts_all_mov,keypts_all_fix,mind_all_mov,mind_all_fix,img_all_mov,img_all_fix,mask_all_mov,mask_all_fix