-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathpseudoranging.py
49 lines (37 loc) · 1.28 KB
/
pseudoranging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from scipy.optimize import minimize, LbfgsInvHessProduct
import numpy
def dist(a, b):
return numpy.linalg.norm(a-b)
def cost_function(approx, deltaranges):
"""
Cost function for the 3D problem
Based on code from https://github.com/AlexisTM/MultilaterationTDOA
TODO: Use weighed least square cost function
"""
e = 0
for dr in deltaranges:
error = dr[2] - (dist(dr[1], approx) - dist(dr[0], approx))
e += error**2
#print("cost", approx, deltaranges, "->", e)
return e
def solve(pseudoranges, guess):
deltaranges = []
ref = pseudoranges[0]
for pseudorange in pseudoranges[1:]:
deltaranges.append(
(
ref[0], # Position of reference station
pseudorange[0], # Position of second station
(pseudorange[1] - ref[1]) * 299792458.) # delta range
)
result = minimize(cost_function, guess, args=(deltaranges))
position = result.x
#if(type(result.hess_inv) == LbfgsInvHessProduct):
# hess_inv = result.hess_inv.todense()
#else:
# hess_inv = result.hess_inv
#dist = self.scalar_hess_squared(hess_inv)
#if dist < self.max_dist_hess_squared:
# self.last_result = position
#return position, hess_inv
return position