

SqlDiffFramework
User Guide

Revision 1.0

April 30, 2010
Michael Sorens

SqlDiffFramework User Guide

Copyright © 2010 by Michael Sorens

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopying, recording, or by any information storage or

retrieval system, without the prior written permission of the copyright owner. This publication,

though related to the SqlDiffFramework software, is a separate work and is not published under the

same license.

Trademarked names may appear in this book. Rather than use a trademark symbol with every

occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of

the trademark owner, with no intention of infringement of the trademark.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,

places, and events depicted herein are fictitious. No association with any real company, organization,

product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

The information in this book is distributed on an “as is” basis, without warranty. Although every

precaution has been taken in the preparation of this work, the author shall have no liability to any

person or entity with respect to any loss or damage caused or alleged to be caused directly or

indirectly by the information contained in this work.

Revision History

Version 1.0 2010.04.30 First Publication

SqlDiffFramework Software Published Under MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of the SqlDiffFramework

software and associated documentation files (the “Software”), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial

portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

SqlDiffFramework User Guide Contents At A Glance

April 30, 2010 Page i

Contents At A Glance

1 INTRODUCTION .. 1

1.1 FEATURE LIST .. 3

2 GETTING STARTED... 5

2.1 INSTALLATION ... 5
2.2 ENTERPRISE CONFIGURATION .. 8

3 USING SQLDIFFFRAMEWORK .. 11

3.1 ANALYZING DIFFERENCES .. 12
3.2 ANALYZING ADDITIONS AND DELETIONS ... 14
3.3 INCLUDING AND EXCLUDING COLUMNS ... 17
3.4 SEARCHING AND FILTERING ... 21
3.5 SORTING AND TURBO-SORTING .. 30
3.6 WORKING WITH QUERIES AND SNAPSHOTS .. 38
3.7 WORKING WITH ODBC DATA SOURCES ... 44
3.8 WORKING IN TANDEM: DO TWO THINGS AT ONCE ... 48
3.9 WORKING WITH CONNECTIONS ... 51
3.10 WORKING WITH META-QUERIES ... 57
3.11 SYNTAX HIGHLIGHTING & KEYWORD COMPLETION .. 69
3.12 AUTOMATING DATA ANALYSIS ... 81

4 UNDERSTANDING SQLDIFFFRAMEWORK COMPONENTS ... 85

4.1 WORKING WITH THE APPLICATION .. 85
4.2 PERSISTENT SETTINGS ... 108
4.3 WORKING WITH THE EDITOR PANE .. 114
4.4 WORKING WITH THE QUERY EDITOR ... 123
4.5 WORKING WITH THE RESULTS GRID ... 133

5 APPENDICES .. 139

5.1 QUICK START ... 139
5.2 LIMITATIONS AND WORK TO BE DONE .. 141
5.3 MASTER FUNCTION REFERENCE ... 143
5.4 ON-SCREEN REFERENCE SHEETS .. 151
5.5 PREPARING AN ODBC CONNECTION .. 155
5.6 PROGRAMMING WITH SQLDIFFFRAMEWORK COMPONENTS .. 157

Detailed Table of Contents SqlDiffFramework User Guide

Page ii April 30, 2010

SqlDiffFramework User Guide Detailed Table of Contents

April 30, 2010 Page iii

Detailed Table of Contents

1 INTRODUCTION .. 1

1.1 FEATURE LIST .. 3

2 GETTING STARTED... 5

2.1 INSTALLATION ... 5
2.1.1 Privacy Considerations .. 6
2.1.2 Component Options ... 6

2.2 ENTERPRISE CONFIGURATION .. 8
2.2.1 Provide Common Connections for Your Enterprise ... 8
2.2.2 Provide Update Notification within Your Enterprise .. 9
2.2.3 Track Users within Your Enterprise .. 10

3 USING SQLDIFFFRAMEWORK .. 11

3.1 ANALYZING DIFFERENCES .. 12
3.2 ANALYZING ADDITIONS AND DELETIONS ... 14
3.3 INCLUDING AND EXCLUDING COLUMNS ... 17

3.3.1 Create the Basic Query ... 17
3.3.2 Match Columns by Aliasing .. 19
3.3.3 Skip Columns With Matching Names ... 20

3.4 SEARCHING AND FILTERING ... 21
3.4.1 Searching the Query Editor ... 21
3.4.2 Searching the Results Grid... 25
3.4.3 Filtering the Results Grid .. 26

3.5 SORTING AND TURBO-SORTING .. 30
3.5.1 Re-sorting Case Sensitive Results for Consistency .. 30
3.5.2 Re-sorting Static Snapshots ... 30
3.5.3 Re-sorting for NULL Consistency ... 32
3.5.4 Simple Sorting .. 33
3.5.5 Turbo-sorting ... 34

3.6 WORKING WITH QUERIES AND SNAPSHOTS .. 38
3.6.1 Organizing Your Files ... 38
3.6.2 Exporting to Excel .. 39
3.6.3 Saving Snapshots ... 42
3.6.4 Retrieving Snapshots ... 42

3.7 WORKING WITH ODBC DATA SOURCES ... 44
3.7.1 CSV Data Sources .. 44
3.7.2 Excel Data Sources ... 45
3.7.3 ODBC Example: Compare Two Excel Files ... 46

3.8 WORKING IN TANDEM: DO TWO THINGS AT ONCE ... 48
3.8.1 Tandem Operations .. 48

3.8.1.1 Load file ... 48
3.8.1.2 New file ... 49
3.8.1.3 Execute query ... 49
3.8.1.4 Toggle local / live mode ... 49
3.8.1.5 Enable auto-execute ... 49

Detailed Table of Contents SqlDiffFramework User Guide

Page iv April 30, 2010

3.8.1.6 Filter result set .. 49
3.8.1.7 Scroll result set .. 49
3.8.1.8 Adjust grid row height .. 49
3.8.1.9 Adjust grid column widths ... 49
3.8.1.10 Enable auto-highlight ... 49
3.8.1.11 Enable case-sensitive syntax highlighting ... 50
3.8.1.12 Enable forcing keywords to upper or lower case ... 50
3.8.1.13 Enable auto-completion ... 50
3.8.1.14 Enable forcing auto-completed phrases to upper/lower/user case .. 50
3.8.1.15 Enable expanding tabs to spaces ... 50
3.8.1.16 Set number of spaces for tab expansion ... 50
3.8.1.17 Toggle tab and Control+tab actions .. 50

3.9 WORKING WITH CONNECTIONS ... 51
3.9.1 Passwords ... 55

3.9.1.1 Session and Persistent Passwords .. 55
3.9.1.2 Ephemeral Passwords.. 55
3.9.1.3 Determining When a Password is Required ... 56

3.10 WORKING WITH META-QUERIES ... 57
3.10.1 Using Meta-Queries .. 57

3.10.1.1 Invoking a Meta-Query .. 58
3.10.1.2 Manipulating a Meta-Query .. 59
3.10.1.3 The Meta-Query Library .. 60

3.10.2 Meta-Query Templates .. 61
3.10.2.1 Template Structure ... 61
3.10.2.2 Template Storage in the Library File .. 64
3.10.2.3 Customizing Meta-Queries .. 65

3.10.3 Meta-Query Usage Summary ... 68
3.11 SYNTAX HIGHLIGHTING & KEYWORD COMPLETION .. 69

3.11.1 Syntax Highlighting .. 69
3.11.1.1 Recognition .. 69
3.11.1.2 Stylization and Case Adjustment .. 69

3.11.2 Keyword Completion ... 70
3.11.2.1 Recognition .. 70
3.11.2.2 Stylization and Case Adjustment .. 70

3.11.3 Highlighting and Keyword Completion Interactions .. 71
3.11.4 Macros ... 71

3.11.4.1 Anonymous Macros vs. Named Macros .. 71
3.11.4.2 Macro Templates ... 72

3.11.5 Customizing Syntax Highlighting and Macros .. 76
3.11.5.1 Context File Structure ... 78
3.11.5.2 Controlling Whitespace in Macros ... 79
3.11.5.3 Highlighting Styles ... 80

3.12 AUTOMATING DATA ANALYSIS ... 81

4 UNDERSTANDING SQLDIFFFRAMEWORK COMPONENTS ... 85

4.1 WORKING WITH THE APPLICATION .. 85
4.1.1 SqlDiffFramework Control ToolBar ... 86

4.1.1.1 Next Difference ... 86
4.1.1.2 Previous Difference .. 86
4.1.1.3 First Difference ... 87
4.1.1.4 Current Difference ... 87

SqlDiffFramework User Guide Detailed Table of Contents

April 30, 2010 Page v

4.1.1.5 Last Difference .. 87
4.1.1.6 Set Current Difference ... 87
4.1.1.7 Toggle Turbo Sort Mode ... 87
4.1.1.8 Toggle Tandem Mode .. 87
4.1.1.9 Toggle Auto-Differencing Mode .. 87
4.1.1.10 Show Progress Monitor .. 88

4.1.2 SqlDiffFramework Result ToolBar ... 89
4.1.2.1 Difference Position Indicator .. 89
4.1.2.2 Match Quality (%) .. 89
4.1.2.3 Count of Added Rows ... 89
4.1.2.4 Count of Missing Rows ... 89
4.1.2.5 Count of Changed Rows ... 90
4.1.2.6 Difference Navigation Shortcuts .. 90

4.1.3 SqlDiffFramework Status Bar .. 91
4.1.3.1 Status DropDown ... 91
4.1.3.2 Memory Indicator .. 91
4.1.3.3 Legend ... 91

4.1.4 File Menu ... 92
4.1.4.1 New workspace .. 92
4.1.4.2 New Query .. 92
4.1.4.3 Open Query... 92
4.1.4.4 Save LEFT query, Save RIGHT query ... 93
4.1.4.5 Exit ... 93

4.1.5 Edit Menu .. 94
4.1.5.1 Find… .. 94
4.1.5.2 Replace… ... 94
4.1.5.3 Restore Settings… .. 94
4.1.5.4 Options… .. 95

4.1.6 View Menu ... 96
4.1.6.1 Next difference ... 96
4.1.6.2 Previous difference .. 96
4.1.6.3 First difference .. 96
4.1.6.4 Current difference .. 97
4.1.6.5 Last difference... 97
4.1.6.6 Set current difference ... 97
4.1.6.7 Show progress monitor ... 97
4.1.6.8 Expand left pane ... 97
4.1.6.9 Expand right pane .. 98
Show both panes .. 98

4.1.7 Query Menu ... 99
4.1.7.1 Execute query ... 99
4.1.7.2 Execute Batch .. 99
4.1.7.3 Meta-queries… ... 99
4.1.7.4 Edit Connections… .. 100
4.1.7.5 Mirror Query…... 100

4.1.8 Help Menu ... 102
4.1.8.1 Show Main Key Reference .. 102
4.1.8.2 Show Editor Pane Key Reference ... 102
4.1.8.3 Show Input Key Reference .. 102
4.1.8.4 Show Output Key Reference ... 103
4.1.8.5 About SqlDiffFramework .. 103

Detailed Table of Contents SqlDiffFramework User Guide

Page vi April 30, 2010

4.1.9 Multiple Monitor Support ... 104
4.1.9.1 Resolution and Orientation Impacts .. 104
4.1.9.2 Maximization Nuances .. 107

4.2 PERSISTENT SETTINGS ... 108
4.2.1 Application-Scoped Global Values ... 108

4.2.1.1 UpdateCatalogFile ... 108
4.2.1.2 UpdateRepository .. 108

4.2.2 Global States ... 109
4.2.2.1 WindowState... 109
4.2.2.2 WindowPosition ... 109
4.2.2.3 UpdateChecked .. 109
4.2.2.4 NewVersion .. 109
4.2.2.5 UnreachableRepository ... 109
4.2.2.6 TandemButton_Checked ... 109
4.2.2.7 TurboSortButton_Checked.. 110
4.2.2.8 AutoDiffButton_Checked .. 110

4.2.3 Editor Pane Shared States .. 110
4.2.3.1 UseLocalDataButton_Checked ... 110
4.2.3.2 AutoHighlightButton_Checked ... 110
4.2.3.3 AutoExecuteButton_Checked ... 110

4.2.4 Editor Pane Distinct States .. 110
4.2.4.1 LeftSqlDirectory ... 110
4.2.4.2 RightSqlDirectory ... 110
4.2.4.3 LeftCsvDirectory .. 110
4.2.4.4 RightCsvDirectory ... 111
4.2.4.5 LeftConnectionName ... 111
4.2.4.6 RightConnectionName .. 111

4.2.5 Database Connections .. 111
4.2.5.1 ConnectionList .. 111

4.2.6 Program Options .. 111
4.2.6.1 UpdateCheckInterval ... 112
4.2.6.2 MaxColumnWidth ... 112
4.2.6.3 CommandTimeout ... 112
4.2.6.4 MaxHighlightedRowsPerChunk .. 113
4.2.6.5 MaxHighlightedRowsTotal... 113
4.2.6.6 ShowElapsedTimes .. 113

4.3 WORKING WITH THE EDITOR PANE .. 114
4.3.1 Top Control Bar Elements .. 115

4.3.1.1 Auto-highlight on/off ... 115
4.3.1.2 Local/live mode .. 115
4.3.1.3 Auto-execute on query load .. 116
4.3.1.4 Execute or refresh ... 116
4.3.1.5 Meta-query dialog .. 116
4.3.1.6 Current file .. 117
4.3.1.7 File picker .. 117

4.3.2 Bottom Control Bar Elements .. 118
4.3.2.1 Grid navigation .. 118
4.3.2.2 Current DB Server .. 119
4.3.2.3 Connection Selector ... 119
4.3.2.4 New query ... 120
4.3.2.5 Save query ... 121
4.3.2.6 Save grid results ... 122

SqlDiffFramework User Guide Detailed Table of Contents

April 30, 2010 Page vii

4.3.2.7 Execution time .. 122
4.3.2.8 Revert to saved query .. 122

4.4 WORKING WITH THE QUERY EDITOR ... 123
4.4.1 Key Features ... 123

4.4.1.1 Dialect-specific syntax highlighting ... 123
4.4.1.2 Recognizes SQL Server, Oracle, and MySql dialects out-of-the-box ... 124
4.4.1.3 Enable or disable automatic highlighting ... 124
4.4.1.4 Hide or display highlighting .. 124
4.4.1.5 Automatic or on-demand highlighting ... 124
4.4.1.6 Distinguishes between end-of-line comments and block comments .. 124
4.4.1.7 Multiple delimiters assignable for strings and variables .. 124
4.4.1.8 Instant conversion of keywords to uppercase or to lowercase .. 125
4.4.1.9 Instant conversion of variables to uppercase or to lowercase .. 125
4.4.1.10 Differentiate groups of keywords ... 125
4.4.1.11 Make keyword recognition case sensitive or insensitive ... 125
4.4.1.12 Enable or disable keyword completion .. 125
4.4.1.13 Invoke keyword completion .. 125
4.4.1.14 Instant case conversion of auto-completed phrases ... 126
4.4.1.15 Macros speed your typing ... 126
4.4.1.16 Macros may be static or dynamic ... 126
4.4.1.17 Navigate among place holders in a macro .. 126
4.4.1.18 Clean up unneeded place holders... 127
4.4.1.19 Delete range by line boundaries ... 127
4.4.1.20 Comment or uncomment a region .. 127
4.4.1.21 Increase or decrease the font size .. 127
4.4.1.22 Increase or decrease the indent of a region.. 127
4.4.1.23 Customize the tab key to insert tab characters or spaces ... 128
4.4.1.24 Customize the tab key to act within the editor or not .. 128
4.4.1.25 Set the number of spaces inserted by the Tab key .. 129
4.4.1.26 Search by text, wildcard, or regular expression .. 129

4.4.2 Types of Highlighting .. 131
4.4.2.1 Keywords .. 131
4.4.2.2 Variables .. 131
4.4.2.3 Comments ... 131
4.4.2.4 Strings .. 131
4.4.2.5 Numbers .. 131
4.4.2.6 Place holders ... 132

4.5 WORKING WITH THE RESULTS GRID ... 133
4.5.1 Key Features ... 134

4.5.1.1 Filtering data ... 134
4.5.1.2 Reveal data type of a column .. 134
4.5.1.3 Adjusting column widths to fit data or headers .. 135
4.5.1.4 Increase or decrease row heights ... 136
4.5.1.5 Export to Excel .. 136
4.5.1.6 Change the format of all displayed date/time values .. 136
4.5.1.7 Reveal column numbers .. 136
4.5.1.8 Show or hide columns ... 137
4.5.1.9 Sort a column from the keyboard ... 137
4.5.1.10 Quick Find ... 138
4.5.1.11 Copy Field Names .. 138

5 APPENDICES .. 139

 SqlDiffFramework User Guide

Page viii April 30, 2010

5.1 QUICK START ... 139
5.1.1 Setup .. 139
5.1.2 Main Window .. 139

5.2 LIMITATIONS AND WORK TO BE DONE .. 141
5.2.1 False Positives from One Engine ... 141
5.2.2 Multi-Threaded Implementation .. 141
5.2.3 Not Instrumented for Internationalization .. 141
5.2.4 Binary Field Types not Supported ... 141
5.2.5 Data Must Fit in Memory ... 141
5.2.6 More Settings Should be Persistent ... 142

5.3 MASTER FUNCTION REFERENCE ... 143
5.4 ON-SCREEN REFERENCE SHEETS .. 151

5.4.1 Main Application Reference ... 151
5.4.2 Editor Pane Reference .. 152
5.4.3 Query Editor Reference .. 153
5.4.4 Results Grid Reference ... 154

5.5 PREPARING AN ODBC CONNECTION .. 155
5.6 PROGRAMMING WITH SQLDIFFFRAMEWORK COMPONENTS .. 157

5.6.1 Key URLs ... 157
5.6.2 Libraries.. 158
5.6.3 Component Descriptions .. 160

5.6.3.1 SqlEditor .. 160
5.6.3.2 Query Picker ... 161
5.6.3.3 ExtendedDataGridView .. 161
5.6.3.4 ChameleonRichTextBox .. 162
5.6.3.5 MultiConnectionStringManager .. 162
5.6.3.6 StructuredTraceSource .. 163
5.6.3.7 FileMaskControl ... 163
5.6.3.8 DisplayCommandsForm ... 164
5.6.3.9 ShadowTipForm ... 164
5.6.3.10 ResourceMgr .. 164
5.6.3.11 UsageTracker ... 165
5.6.3.12 UpdateCheck ... 165
5.6.3.13 WindowRestorer ... 165
5.6.3.14 MemoryGauge ... 165
5.6.3.15 MenuBuilder .. 165
5.6.3.16 ToolStripDropDownManager ... 166

SqlDiffFramework User Guide Table of Figures

April 30, 2010 Page ix

Table of Figures

Figure 2-1 Installer Snapshot .. 5

Figure 2-2 Accessing Boot Configuration Options .. 7

Figure 3-1 Main Window .. 11

Figure 3-2 A Differential Comparison .. 12

Figure 3-3 A Starting Query ... 18

Figure 3-4 Matching Columns .. 19

Figure 3-5 Skipping Columns... 20

Figure 3-6 Query Editor Find and Replace .. 22

Figure 3-7 Result Grid Quick Find .. 25

Figure 3-8 Filtering Sequence ... 28

Figure 3-9 Snapshot Data in Native Order ... 31

Figure 3-10 Snapshot Data With Turbo-sort Applied ... 32

Figure 3-11 Native Sort Order of NULL ... 32

Figure 3-12 Turbo-sorting To Compensate for NULLs .. 33

Figure 3-13 Directory Structure ... 38

Figure 3-14 Ensuring Excel Interoperability .. 41

Figure 3-15 ODBC Example with Excel .. 47

Figure 3-16 Connection Editor Concepts .. 51

Figure 3-17 Connection Editor Examples ... 53

Figure 3-18 Login Dialog .. 55

Figure 3-19 Meta-Query Selector ... 58

Figure 3-20 Meta-Query Schema ... 65

Figure 3-21 Meta-Query Processing .. 67

Figure 3-22 Keyword Completion List ... 72

Figure 3-23 Instantiating a Macro .. 73

Figure 3-24 Context Definition Schema .. 77

Figure 3-25 Keyword Groups ... 79

Table of Figures SqlDiffFramework User Guide

Page x April 30, 2010

Figure 3-26 Batch Execution Palette .. 82

Figure 3-27 Batch Execution Results ... 83

Figure 3-28 Batch Results Including Orphans ... 84

Figure 4-1 Components of SqlDiffFramework .. 85

Figure 4-2 Exploded View of Application's Control ToolBar .. 86

Figure 4-3 Progress Monitor ... 88

Figure 4-4 Exploded View of Application's Result ToolBar .. 89

Figure 4-5 Restore Settings Confirmation Dialog .. 95

Figure 4-6 Mirror Dialog ... 100

Figure 4-7 The About Box ... 103

Figure 4-8 Maximize to Multiple Monitors .. 104

Figure 4-9 Spanning Multiple Monitors with Varying Resolutions 105

Figure 4-10 Windows Display Control Panel .. 106

Figure 4-11 Options Dialogs ... 112

Figure 4-12 Editor Pane ... 114

Figure 4-13 Exploded View of Editor Pane’s Top Control Bar .. 115

Figure 4-14 Exploded View of Editor Pane’s Bottom Control Bar .. 118

Figure 4-15 Auto-Query Generation ... 121

Figure 4-16 Query Editor .. 123

Figure 4-17 Query Editor Context Menus .. 130

Figure 4-18 Results Grid .. 133

Figure 4-19 Revealing Column Information .. 134

Figure 4-20 Adjusting Column Widths ... 135

Figure 4-21 Column Shortcuts .. 137

Figure 5-1 Defining an ODBC Connection ... 155

Figure 5-2 Library Dependencies ... 159

SqlDiffFramework User Guide Table of Tables

April 30, 2010 Page xi

Table of Tables

Table 3-1 Commonly Used Regular Expression Tokens .. 23

Table 3-2 Regular Expression Samples ... 23

Table 3-3 SQL Dialect for Grid Filtering ... 27

Table 3-4 Syntactical Variations Acceptable to Turbo-Sorting .. 36

Table 3-5 Comparing Live and Local Data Sources .. 43

Table 3-6 Standard Meta-Queries .. 61

Table 3-7 Meta-Query Usage Summary.. 68

Table 3-8 Sample Sequence Filling in a Query Template ... 75

Table 4-1 Sample Distribution of Chunks .. 90

Table 4-2 Actions of Maximize vs. Control+Maximize ... 107

Table 5-1 Key URLs for SqlDiffFramework Reference ... 157

Table 5-2 Libraries Used in SqlDiffFramework ... 158

Conventions, Credits, and Prerequisites SqlDiffFramework User Guide

Page xii April 30, 2010

Conventions, Credits, and Prerequisites

Conventions:

Italic Indicates new terms, article titles, and email addresses.
Constant width Filenames, directories.

Text Hyperlinks.
Shaded Code fragments.

Heavy Bold Program components.

Text On-screen buttons.

Text Keyboard characters. Example: Control+Tab
Text Standard menu.

Text Context menu.

Credits:

 Basic apple and orange images (used to make the blend on the cover) come from

http://www.freeclipartpictures.com/0frames/food.html

 Binary on front cover comes from Stock.XCHNG (http://www.sxc.hu/).

 Tip indicator () comes from http://www.everystockphoto.com/photo.php?imageId=273127 and is

used in accordance with their license terms.

 Difference navigation buttons (, , , ,) come from the WinMerge open source project

(http://winmerge.org/) by permission from the author. (WinMerge is licensed under GPL:

http://www.opensource.org/licenses/gpl-2.0.php)

 Included third-party libraries are described in section 5.6.2.

 SqlDiffFramework was created with Visual Studio 2008 and assistance from WinMerge, Subversion,

LINQPad, NUnit, Ant, and other assorted development tools.

 The SqlDiffFramework installer was created with InnoSetup (http://www.jrsoftware.org/isinfo.php).

 This manual was created with Microsoft Word, Paint.NET, and SnagIt.

Prerequisites:

.NET Framework version 2.0 or later (According to Wikipedia this means you can effectively run on

Windows 2000 or later; see http://en.wikipedia.org/wiki/.NET_Framework.)

http://www.freeclipartpictures.com/0frames/food.html
http://www.sxc.hu/
http://www.everystockphoto.com/photo.php?imageId=273127
http://winmerge.org/
http://www.opensource.org/licenses/gpl-2.0.php
http://www.jrsoftware.org/isinfo.php
http://en.wikipedia.org/wiki/.NET_Framework

SqlDiffFramework User Guide Conventions, Credits, and Prerequisites

April 30, 2010 Page xiii

Comments and Questions:

Please address your questions to SqlDiffFramework at gmail.com.

For more information on SqlDiffFramework, see http://SqlDiffFramework.codeplex.com/.

For more information on components and building blocks used to build SqlDiffFramework,

see http://cleancode.sourceforge.net/.

About the Author

Michael Sorens is a freelance software engineer, spreading the seeds of good

design wherever possible. He has more than two dozen articles published on

Simple-Talk.com and DevX.com, has contributed to two books, been awarded a

patent, taught computer science, and manages an open-source website

(cleancode.sourceforge.net). With BS and MS degrees in computer science and engineering,

he has worked at both Fortune 500 firms and startups using C#, SQL, XML, XSL, Java, Perl,

C, Lisp, PostScript, and others.

His diverse assortment of technologies and products has included:

 color laser printer firmware at Xerox;

 websites at HP and OzEmail;

 content management systems at Tektronix;

 test automation at HP and AdvantageIQ;

 integrated circuit design using LISP(!) at HP;

 specialized network monitoring software at Itron.

But his favorite project was designing and implementing the world's smallest word

processor, where the medium was silicon, the printer “head” was a laser, and the

Declaration of Independence could literally fit on the head of a pin. (This advanced

lasography system was actually designed for rapid prototyping of custom integrated

circuits.)

I want to hear from you!

Does SqlDiffFramework make you more productive? Why or why not?

Is this user guide effective for you? Why or why not?

Please send your feedback to SqlDiffFramework at gmail.com.

http://sqldiffframework.codeplex.com/
http://cleancode.sourceforge.net/
http://www.simple-talk.com/author/michael-sorens/
http://www.devx.com/DevX/contentByAuthor/38240?author_id=1967&num_items=ALL
http://cleancode.sourceforge.net/

Conventions, Credits, and Prerequisites SqlDiffFramework User Guide

Page xiv April 30, 2010

SqlDiffFramework User Guide Feature List

April 30, 2010 Page 1

1 Introduction

Why SqlDiffFramework?

At any single moment, there are many companies in the midst of an

upgrade, a migration, or a conversion of one software system to another.

Most any such system has a database at its heart. The naïve approach of

deciding on a launch date and switching over entirely from system A to

system B is (one hopes!) a dying phenomenon. The much more prudent

approach is to run the two systems in parallel during a specified transition

period. This could certainly double the workload (for data entry folks, for

DBAs, for analysts, etc.) but for something that can make or break your

organization, it is well worth it.

So how do you judge whether the two systems are producing identical

results? You can run reports on each and compare them, but chances are

your reports will be formatted differently and contain different data; that is,

after all, why you are migrating to a new system, right? Even if your reports

do happen to contain all the same data, do you have reports that

exhaustively cover all the data in your database? SqlDiffFramework gives

you a much finer probe of your data, allowing you to cover all the data and

to match arbitrarily different data between systems.

SqlDiffFramework is unique among database comparison utilities. The typical comparison

utility lets you compare the structure (schema) of your database; others let you compare

your data (e. g. SQL Compare and SQL Data Compare products from Redgate). But even

Redgate’s premium products are only for a single database type, SQL Server.

SqlDiffFramework is a data comparison tool that spans database types: it supports SQL

Server, Oracle, and MySql. It also supports ODBC data connections, allowing you to

compare, for example, an Oracle table with an Excel spreadsheet, or compare a SQL Server

table with a CSV file.

SqlDiffFramework takes a novel approach to comparing dissimilar databases: it is a

differencing application that uses your custom-written SQL rules to compare apples and

oranges. For users not familiar with the English idiom of “That's like apples and oranges”,

the classic phrase sums up the difficulty of comparing objects that are dissimilar—hence

the blended apple/orange fruit on the cover! As a curious aside, Serbians refer to this

challenge as “old ladies and frogs”, according to National Geographic, March 2010, page

22. A simple example will illustrate the simplicity of monitoring diverse systems. Say, for

Feature List SqlDiffFramework User Guide

Page 2 April 30, 2010

example, that your environment consists of a SQL Server installation and an Oracle

installation. While they drive different front-ends there is a core set of tables that must be

consistently maintained between the two databases. Your customer name table on both

systems has CustomerId and CustomerName fields, among a few others. The list of ids and

names should always match between the two systems as one is set up with appropriate

triggers to copy any changes. SqlDiffFramework lets you verify that state on demand: load

the same query into each of the dual edit panes in the application:

SELECT CustomerId, CustomerName

FROM dbo.CustomerNames

ORDER BY CustomerId

Run the query against both databases to generate dual result sets. The auto-differencing

engine examines both result sets and visually highlights any differences, additions, or

omissions between the two, allowing you to easily navigate among them just like any of a

number of visual differencing tools for conventional text files.

SqlDiffFramework matches columns by name. This simple fact has several ramifications. It

means first that you could include additional columns in your result set that will not be

compared (but you want to see them for reference). More importantly, it means that any

columns that you want to compare must either have the same name or be aliased to the

same name. If one of the two databases used FullName instead of CustomerName due to legacy

reasons, the second query need only be changed to:

SELECT CustomerId, FullName as CustomerName

FROM dbo.CustomerNames

ORDER BY CustomerId

Your goal, then, is to generate a result set with an appropriate SELECT statement that allows

you to convert both your apple and your orange into a durian (substitute your own

preference for a neutral fruit here). In practice, I have used some queries that are as simple

as these for some tables. But other tables have required elaborate joins, filters, temporary

tables, aggregated subqueries, and more to yield a suitable result set for comparison. Sharp

SQL skills will definitely aid you on your journey.

After the next chapter on installation, the first part of this manual is a user guide,

describing the concepts and techniques for using SqlDiffFramework. The remainder of the

manual is a reference, providing details on every button, menu item, and command

available to effectively use the application.

SqlDiffFramework User Guide Feature List

April 30, 2010 Page 3

1.1 Feature List

 Provides two completely separate SQL editor windows, each of which may point to

the same database or different databases. With a single click you may link them

together so they will load queries, load results, scroll, and filter in synchronization.

Click again to unlink them. Press an override key to temporarily reverse the

link/unlink state for a single operation.

 Generates a typical visual difference display common to many diff programs for text

files, only this operates on database result sets. Row differences are denoted similar

to textual diff programs, showing additions, deletions and changes. The specific

columns that differ within those rows are highlighted further, pinpointing the

differences.

 To perform a difference operation, you simply need to specify two queries that

provide matching column names. All matching columns will be used in the

comparison; unmatched columns will be ignored. To match column names, you use

the standard SQL mechanism to alias a column, as in select name as CompanyName

from To skip some columns that match, simply add the column to an ignore

list that resides with one or both of the queries as a SQL comment set off with special

delimiters.

 Select from a choice of three difference engines that provide varying levels of

performance and accuracy. Simply selecting a different engine will re-evaluate all

the current data (without refetching anything from the source) and update the visual

differencing on screen.

 Apply a filter defined by a general SQL predicate (e.g. ID < 1000 and name like

'Sam%') and the filtered results are re-evaluated to update the visual differencing on

screen.

 Search for values in the result set or search for text in the query.

 Load the result set from either a live database or from an archived, local copy (in

CSV format).

 Operational configuration lets you tailor the application to your preferences,

including: automatic differencing on/off when needed, automatic query execution

upon query load on/off, results from live/local data, automatic syntax highlighting

on/off, tandem/synchronized operation on/off.

 Connection editor lets you define a set of database connections to SQL Server,

Oracle, or any ODBC data source. Passwords, if you choose to store them, are stored

with secure encryption. The connection set is easily exported or imported, allowing

you to copy it from one installation to another.

Feature List SqlDiffFramework User Guide

Page 4 April 30, 2010

 Meta-queries provide a convenient mnemonic aid allowing you to search for tables

or fields with wildcards, find non-empty tables, identify database version, and list

other useful queries, based on the database type.

 Controls to navigate the differences allow you to scroll to next or previous

difference, first or last difference, to return to the current difference if you have

scrolled elsewhere, and to set the current difference to the current location.

 Typically you start with a query and obtain results from live databases or archived

results. But you could also start with just data, then automatically generate a query

from the data, and finally customize the queries to match columns, reorder rows,

etc.

 You have sorting flexibility to manipulate the results to your liking: sort result sets

on multiple columns via the standard SQL order by clause in your query, or sort on a

single column by clicking a column header with the mouse or by single keystroke

(Control+Shift+digit) where n may select any of the first nine columns.

 You have display flexibility to hide or show any number of columns via context

menu; any of the first nine may be hidden/shown by single keystroke

(Control+Alt+digit).

 Adjust cell sizes: Adjust the column widths to fit either the header text or the data

via keystroke or context menu. Increase or decrease row heights via keystroke.

 Automate data analysis by running any number of queries with a single click,

generating a summary result table.

SqlDiffFramework User Guide Installation

April 30, 2010 Page 5

2 Getting Started

2.1 Installation

SqlDiffFramework includes a full-featured installer, providing a convenient and fast way to

set up an entry in your start menu, on your quick launch bar, on your desktop—or none of

these. You select which shortcuts to install. At the same time, the installation is lightweight:

it has no hooks into your system other than a couple registry items whose sole purpose is

to allow a quick uninstall at a later date.

Figure 2-1 Installer Snapshot

Installation SqlDiffFramework User Guide

Page 6 April 30, 2010

2.1.1 Privacy Considerations

SqlDiffFramework saves passwords that you enter in an encrypted form. Neither you nor

anyone else can ever see your passwords from inside the application. The passwords are

saved—at your option—in your personal user.config file; however, they are also

encrypted in the file. The encryption key is tied to the current machine so your

configuration file cannot be used on another machine. Even if you export your passwords

as a backup, the export stores them encrypted so they cannot be read.

SqlDiffFramework never “phones home” with any of your personal information. It may—if

you configure it as described in section 2.2.3—store information about your installation

within your corporate network, for use by your own system administrators.

2.1.2 Component Options

Everything in Figure 2-1 is completely standard for a Windows installer except for the

choice of components, indicated as Standard or Large Address Space. The latter is

available if the standard 2GB address space for Windows applications (Windows XP or

earlier) just is not enough for the data you need to analyze. To give you some feel for this, I

had not needed to implement this option for more than 6 months of intensive use of the

application. But for a result set exceeding 500,000 records and 10 columns,

SqlDiffFramework complained of exhausting memory at 1.5GB (presumably the other 0.5

GB was due to overhead from the .NET framework). By using the larger address space

model, this query comparison was able to grab the remaining 300MB it needed to complete

analysis.

In order to use the larger address space model you need to take an additional step beyond

the selection in the installer. You must modify your system boot configuration to increase

the size of the user process address space from 2GB to 3GB using the /3GB option in your

boot.ini file. Figure 2-2 shows the simplest way to do this. (For further details, see

Microsoft's Boot INI Options Reference at http://support.microsoft.com/kb/833721.)

 TIP: To check whether you installed the standard or the large address space

version of the application, use the dumpbin utility from a Visual Studio

command prompt. Check the headers of the exe file (/headers option) with

dumpbin and look for a line near the top stating: Application can handle

large (>2GB) addresses.

http://support.microsoft.com/kb/833721

SqlDiffFramework User Guide Installation

April 30, 2010 Page 7

Figure 2-2 Accessing Boot Configuration Options

From the System Properties control panel, select the startup and recovery settings, then select the

button to edit the startup options.

Enterprise Configuration SqlDiffFramework User Guide

Page 8 April 30, 2010

2.2 Enterprise Configuration

SqlDiffFramework provides a few optional features geared toward multiple installation

deployment and corporate environments. The following sections describe these features

that you would perform as a post-installation step. SqlDiffFramework does not provide an

automatic mechanism for these. If your user base is small you can do these manually with a

text editor. For a larger user base, use scripting tools to perform the actions described.

2.2.1 Provide Common Connections for Your Enterprise

A connection defines the credentials necessary to connect to a data source. Section 3.9

describes connections in detail including how to export a set of connections from one

machine and import them to another. As part of your deployment, you may wish to define

a set of connections common to all users or a group of users, then merge that connection set

into each installation as a post-installation step. The connections are stored in the

application's standard .NET configuration file (SqlDiffFramework.exe.config) located in

the same directory as the application itself. The default value of the ConnectionList setting

provides two SQL Server connections as an example, one to the master database available

on any system and one to the commonly used AdventureWorks demo database.

<setting name="ConnectionList" serializeAs="Xml">

 <value>

 <ArrayOfConnectionDetails

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <ConnectionDetails>

 <ConnectionName>local-master</ConnectionName>

 <ConnectionString>Data Source=.\SQLEXPRESS;Initial

Catalog=master;Integrated Security=True;Persist Security

Info=True</ConnectionString>

 <DbType>SqlServer</DbType>

 <RememberPassword>false</RememberPassword>

 <Description>local SSExpress, master DB</Description>

 </ConnectionDetails>

 <ConnectionDetails>

 <ConnectionName>local-AdvWorks</ConnectionName>

 <ConnectionString>Data Source=.\SQLEXPRESS;Initial

Catalog=AdventureWorks;Integrated Security=True;Persist Security

Info=True</ConnectionString>

 <DbType>SqlServer</DbType>

 <RememberPassword>false</RememberPassword>

 <Description>local SSExpress, AdventureWorks DB</Description>

 </ConnectionDetails>

 </ArrayOfConnectionDetails>

 </value>

</setting>

SqlDiffFramework User Guide Enterprise Configuration

April 30, 2010 Page 9

You may either edit this <setting> with an XML editor or use the SqlDiffFramework's

connection editor, export the settings to a file, then create a script which copies the XML in

the exported file into the appropriate section of the SqlDiffFramework.exe.config file on

each target machine. Note that this is a user-scoped setting so it may also be stored in the

user.config file, depending on your needs.

2.2.2 Provide Update Notification within Your Enterprise

SqlDiffFramework checks for updates from a given location on your intranet allowing you,

the system administrator, full control over when users should be notified of new versions.

Note that it does not automatically install an update; it merely notifies users of the presence

of an update.

Installation packages follow a naming convention of including the version number in the

package name for use by the update notification mechanism. You may alter the package

names if desired but to recognize the version of the package the version number must be

embedded in the file name with components separated by either hyphens, underscores, or

periods. For example, SqlDiffFramework_1-1-0-0.exe would be recognized as having

version 1.1.0.0. The components of the version number are compared numerically so

SqlDiffFramework_1-1-10-0.exe is correctly determined to be a later version than

SqlDiffFramework_1-1-2-0.exe (if compared as simple character strings the reverse would

be true).

To use this update notification feature you need to provide a value to the UpdateRepository

(section 4.2.1.2) setting in the SqlDiffFramework.exe.config file. Set this to an empty value

to globally disable the feature. Even if you provide a valid repository path, the user may

use the Options panel to either change the notification check interval or disable it

completely at the local level.

Update notification does not occur on every invocation; once notified, a user will not be

notified for 5 days to prevent an annoying pop-up on every application start.

As a performance optimization, SqlDiffFramework learns if the search path contains no

useful directories and eventually stops checking. Depending on your network this could

improve startup time where there might be delays checking network directories only to

find none of them exist. See the description of the UnreachableRepository setting (section

4.2.2.5) for further details.

Enterprise Configuration SqlDiffFramework User Guide

Page 10 April 30, 2010

2.2.3 Track Users within Your Enterprise

Within a corporate environment the IT department often wants to keep track of

installations of any application. SqlDiffFramework automatically catalogs the first use of

each user after installation. It writes user details to a common XML catalog file; here is a

sample showing a succession of versions from 1.0.1.0 through 1.0.3.0, including several

different users, including a couple re-installations of the same version.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<catalog>
 <version id="1.0.1.0">
 <user name="Sorens, Michael">
 <event ip="149.93.16.52" date="3/22/2009 9:09:08 AM" os="Win XP Pro

5.1.2600 SP2" machine="dellxp" />
 <event ip="149.93.16.52" date="3/22/2009 9:23:57 AM" os="Win XP Pro

5.1.2600 SP2" machine="dellxp" />
 </user>
 <user name="Smith, James">
 <event ip="149.93.16.157" date="3/22/2009 9:34:38 AM" os="Win 2000

Pro 5.0.2195 SP4" machine="smithpc" />
 </user>
 </version>
 <version id="1.0.2.0">
 <user name="Sorens, Michael">
 <event ip="149.93.16.52" date="3/22/2009 9:39:02 AM" os="Win XP Pro

5.1.2600 SP2" machine="dellxp" />
 </user>
 </version>
 <version id="1.0.3.0">
 <user name="Sorens, Michael">
 <event ip="149.93.16.52" date="3/23/2009 1:56:29 PM" os="Win XP Pro

5.1.2600 SP2" machine="dellxp" />
 <event ip="149.93.16.52" date="3/26/2009 8:07:26 AM" os="Win XP Pro

5.1.2600 SP2" machine="dellxp" />
 <event ip="149.93.16.52" date="3/26/2009 10:42:24 AM" os="Win XP Pro

5.1.2600 SP2" machine="dellxp" />
 </user>
 <user name="Smith, James">
 <event ip="149.93.16.157" date="3/26/2009 10:48:42 AM" os="Win 2000

Pro 5.0.2195 SP4" machine="smithpc" />
 </user>
 <user name="Valentine, Michael">
 <event ip="149.93.16.157" date="3/29/2009 3:43:17 PM" os="Win 2000

Pro 5.0.2195 SP4" machine="valentinepc" />
 </user>
 </version>
</catalog>

To use this cataloging feature you need to provide a value to the UpdateRepository (section

4.2.1.2) and UpdateCatalogFile (section 4.2.1.1) settings in the SqlDiffFramework.exe.config

file. Set either one or both of these settings to an empty value to disable the feature.

As a performance optimization, SqlDiffFramework learns if the search path contains no

useful directories and eventually stops checking. Depending on your network this could

improve startup time where there might be delays checking network directories only to

find none of them exist. See the description of the UnreachableRepository setting (section

4.2.2.5) for further details.

SqlDiffFramework User Guide Enterprise Configuration

April 30, 2010 Page 11

3 Using SqlDiffFramework

You begin with the application's main window with no content—see Figure 3-1. There are

two identical editor panes side by side. You load a query into each of these then execute

those queries against two different databases. SqlDiffFramework then analyzes the two

result sets and color codes any discrepancies.

The queries need to be written with certain guidelines in mind so that SqlDiffFramework

understands how to compare the results. You will see how to do that shortly, but first take

a look at what the application can really do.

Figure 3-1 Main Window

Main Window: A fresh invocation of SqlDiffFramework shows a menu bar and two toolbars at the top

and a status bar at the bottom. The middle contains two identical editor panes.

Analyzing Differences SqlDiffFramework User Guide

Page 12 April 30, 2010

3.1 Analyzing Differences

A politician, a writer, and an economist wash up on a desert island. Next to them on the beach is a

case of food—canned goods. How to open the cans? The banker is stumped; the writer has no ideas.

They look at the economist, who says: “Assume we have a can opener…”

To you, dear reader, I analogously begin: For the moment, assume you know how to load a

file, execute a query, and perform an analysis. Having done all that, here is the differential

comparison of two small data sets. The editor pane on the left is pointing to an Oracle 10g

database; the editor pane on the right is pointing to a SQL Server 2005 database. These two

systems maintain some common tables between them and it is crucial that they stay

precisely synchronized. You, as the system administrator, fire up SqlDiffFramework on a

regular basis to monitor the synchronization.

Figure 3-2 A Differential Comparison

There are several changes noted between a table in the Oracle database and a corresponding table

in the SQL Server database.

SqlDiffFramework User Guide Analyzing Differences

April 30, 2010 Page 13

Figure 3-2 shows that there are some differences. Glance first at the results toolbar (see

4.1.2); this is the toolbar at the top of the window on the right. It reports a 93% match; this

is highlighted in the figure as point 1. The differences in this case are in three clusters (point

2) and the screen shot happens to indicate that the current difference cluster is the last of

the three. The results toolbar further indicates that among the collective set of differences,

there are 2 rows added to the left side that are not on the right side (point 3) and 5 rows

that exist on both sides but contain different data (point 4).

Now take a look at the color-coded portions of the result sets. Each pair of rows that differ

is colored light green, with the exception of the current difference, colored light red. Thus,

when you navigate back to the second difference, the third set reverts to green and the

second set becomes red. Within a row, SqlDiffFramework shows precisely which columns

differ by increasing the color saturation and emboldening the text. The first difference

cluster, consisting of a single row containing Ethiopia, has a discrepancy in just the

CountryCode column, “ET” on the left and “EH” on the right. The second difference

cluster has a discrepancy in two columns, the CountryName and the CountryCode, so both

are highlighted in deeper green.

The third difference cluster is more interesting. Observe that on the left side there are 5

rows marked but only 3 of them highlight specific discrepancies. Discrepant rows in one

editor pane are always paired up with rows in the partner pane. Therefore there can only

be discrepancies marked for the minimum row count between the left rows and the right

rows in the cluster. Because the right side has the smaller number—3 rows—this dictates

how many rows on the left can show discrepancies.

But why, you may wonder, does the grid pair “Haiti” on the left with “Hong Kong-” on the

right? It is “obvious” that the two “Hong Kong” rows should be paired together, right? But

the right side value is “Hong Kong-” with a (presumably accidental) trailing hyphen.

Differencing algorithms typically compare two values—in this case the entire left-side row

and the entire right-side row—and determine that they match or they do not; there is no

“almost”. So as an observer, you can see that there are two “Hong Kong” rows and those

should be compared but the application only sees that the first three rows differ. What this

implies, though, is that the more you clean up the data, the more difference clusters will be

meaningful, allowing you to clean up the data better still, to get more meaningful clusters,

ad infinitum.

I will mention just briefly here that differential analysis is a challenging problem that does

not have one optimal solution. As such, SqlDiffFramework contains three different

differencing engines, switchable with a single mouse click (see 4.1.1.9). Even on the small

example presented above you will get different results between the Tauberer engine and

the Potter engine. On large data sets, therefore, differences may diverge even more.

Analyzing Additions and Deletions SqlDiffFramework User Guide

Page 14 April 30, 2010

Notice in Figure 3-2 that the values in the IdCountry column differ markedly yet those

differences are ignored. See 3.3 for details on how they IdCountry column was skipped, as

well as how the country name and code were properly paired.

3.2 Analyzing Additions and Deletions

The previous section focused on changed data; data that exists in both left and right editor

panes but with different values. This section considers the other major category: added data.

Added data from one side is, of course, missing data from the other side.

SqlDiffFramework always considers the left editor pane as the reference point so added rows

means rows appearing on the left that do not exist on the right while missing rows means

rows appearing on the right that do not exist on the left. The results toolbar in Figure 3-2

reports the values for added, missing, and changed rows.

For changed data you have seen that discrepant rows are marked in green on both left and

right editor panes. Added rows are similarly marked in green but only in the left pane.

Green continues to mean that those values are different from the partner pane. The right

pane, however, uses brown colored rows to indicate a location where the added rows on

the left would be if they were present. Deleted rows do just the reverse: these are marked

with green on the right and brown on the left.

The brown rows in themselves do not indicate different data; they are reference indicators only!

Normally there will always be two brown rows. Together they indicate the single reference

point right between them. At the very top and very bottom of the data grid, though, there

will only be a single brown row. Think of the second one as existing just off the grid so that,

again, the reference point is right between them. In the case of a brown first row, the

reference point is therefore above it at the top boundary of the grid. Similarly, a brown last

row means the reference point is below it at the bottom boundary of the grid. The

following storyboard should help make this clear.

SqlDiffFramework User Guide Analyzing Additions and Deletions

April 30, 2010 Page 15

This snapshot shows a fresh
analysis indicating these
four difference clusters in
order:

 two missing rows at the
top of the grid;

 one missing row in the
middle;

 two added rows in the
middle; and

 three added rows at the
bottom of the grid.

Since this is a fresh analysis,
there is not yet any current
cluster and all rows are
either brown (indicating
reference points) or green
(indicating discrepant data).

Upon selecting

Move to Next Difference

the first difference becomes
the current difference.

Consistent with the
previous section, changed
data in the current
difference cluster changes
from green to red; in this
case the Albania and
Algeria rows on the right.
The brown reference on the
left also changes color—this
time to yellow—to indicate
the current difference.

Interpretation of this
current difference:

The Albania and Algeria
rows are missing from the
left; if they were present
they would be before
Angola.

Analyzing Additions and Deletions SqlDiffFramework User Guide

Page 16 April 30, 2010

Move to Next Difference

makes the second difference
the current difference.

Interpretation of this
current difference:

The missing Belgium row, if
it existed on the left, would
be between Belarus and
Benin, just as it is on the
right.

Observe that both Belarus
and Benin exist on both the
left and the right and they
match. This confirms that
the brown (and the yellow)
do not indicate differences,
just reference points.

Move to Next Difference

makes the third difference

the current difference.

Interpretation of this

current difference:

The added rows for Brazil

and Brunei would be

between Botswana and

Bulgaria.

SqlDiffFramework User Guide Including and Excluding Columns

April 30, 2010 Page 17

Move to Next Difference

makes the fourth and final

difference the current

difference.

Interpretation of this

current difference:

The added rows for China,

Colombia, and Congo

follow Chile on the left. If

they were also on the right,

they would similarly follow

Chile, highlighted in

yellow.

3.3 Including and Excluding Columns

3.3.1 Create the Basic Query

The crux of differential comparison is specifying what to compare and what to ignore.

Figure 3-3 again shows the example country query that you saw when it was tailored for

SqlDiffFramework use, but here it is rewound back to the first cut. The Oracle query on the

left includes the three fields to display and the SQL Server query on the right shows the

corresponding three fields, though two of them have different field names. Ironically, the

field name that you do not want to compare—IdCountry—happens to be the same on both

sides. In your environment you may want to match an ID field. For this example, I am

making a reasonable assumption that the ID field for each table is a primary key,

meaningless outside that table but vital to the table itself. As a primary key, it is often

helpful to display the ID in order to uniquely identify a record but it is meaningless to

compare it to another ID.

SqlDiffFramework matches columns by their display names. A display name is just the

name shown in the result set grid. In Figure 3-3, the display names are identically the field

names referenced in the query. Since IdCountry is present in both result sets, those

columns are matched for comparison. The name of the country, though, is called

Including and Excluding Columns SqlDiffFramework User Guide

Page 18 April 30, 2010

CountryName on the left but Country on the right. Since these display names are different

those columns are not matched—this is noted in the grids by marking the entire column in

italics and using grey text instead of black. The country code similarly does not match and

is marked in italics.

 TIP: Note that column matching is not case-sensitive: You may use

IdCountry on one side and IDCOUNTRY on the other and they will still match.

Figure 3-3 A Starting Query

These queries identify the columns to be displayed but produce a poor

match. The IdCountry field is matched between editor panes but the country

name and code are not, just the reverse of what would be most useful.

SqlDiffFramework User Guide Including and Excluding Columns

April 30, 2010 Page 19

3.3.2 Match Columns by Aliasing

Once you have created the basic query to return the data you need, the second step is to

alias field names to matching display names. You may do this on either editor pane (or

even both if desired). As shown in Figure 3-4, the right side query is modified to alias the

native Country field to the CountryName display name. Similarly, GLCountryCode is

aliased to CountryCode. The alias names were assigned by observing the field names from

the left editor pane.

With these aliases in place, re-executing the queries yields the result sets shown in Figure

3-4. Now all three columns are shown in as non-italics indicating they are all actively being

compared. You do not, however, want the IdCountry column to be an active column; the

next section shows how to disable it.

Figure 3-4 Matching Columns

These queries have been correlated to produce a better match by aliasing the

field names to matching display names.

Including and Excluding Columns SqlDiffFramework User Guide

Page 20 April 30, 2010

3.3.3 Skip Columns With Matching Names

There are actually two ways to skip columns. The first technique you already know: make

the display names different. The second involves a special syntactic construct in your

query. Use the :IGNORE: clause embedded into a comment so that it does not cause errors

when you send the query to the database. Following the :IGNORE: keyword include a

comma-separated list of field names that you want to skip. Figure 3-5 shows the IdCountry

field being skipped with the :IGNORE: clause.

Figure 3-5 Skipping Columns

Use the special syntactic construct shown in the left editor pane to ignore

particular fields.

SqlDiffFramework User Guide Searching and Filtering

April 30, 2010 Page 21

Figure 3-5 shows the :IGNORE: clause as the first line in the left editor pane but it does not

matter whether you put the clause in the left or the right editor pane nor where it appears

within the query. The only restrictions to keep in mind are that the list of fields must all be

on a single line with the opening token and nothing else except whitespace. The formal

syntax for an <ignore-clause> is just this:

<ignore-clause> ::= '--' ':IGNORE:' <display-name> { ',' <display-name> }

Whitespace may appear anywhere within the line and is ignored.

 TIP: If you change the elements in the ignore list, generally you should re-

execute both queries, not just re-apply differencing or re-execute one query.

That may work sometimes but other times you may see some residual

difference highlighting. Re-executing the queries will clean that up.

3.4 Searching and Filtering

The search capability of the query editor and the search and filtering capabilities of the

result grid together provide a useful means for finding and isolating information.

3.4.1 Searching the Query Editor

To search the query editor, invoke the Find command via the keyboard (Control+F) or via the

menu (Edit  Find…); the Replace command (Control+H) brings up the same dialog with

additional settings for replacement.

Searching and Filtering SqlDiffFramework User Guide

Page 22 April 30, 2010

Figure 3-6 Query Editor Find and Replace

Both the Find (Control+F) and Replace (Control+H) dialogs allow searching

by text, wildcards, or regular expressions. Switch the find mode with the

drop-down as shown in the Find Text box at top. Switch between find and

replace using the Replace check box in the upper right corner.

You may set the search mode to any of these choices:

Plain text – finds exactly what you type.

Wildcards – use * to match any number of characters and ? to match any single character.

These are standard wildcard characters to specify multiple files on the command line with

Windows or Unix-like operating systems. This mechanism is provided as a convenience for

users familiar with it, but use the regular expression mechanism for more flexibility.

Regular expressions – mix text and regular expression notation to create a powerful

matching expression. A comprehensive description of regular expressions is beyond the

scope of this manual but if you are not familiar with them I encourage you to learn a bit

about them. They allow you to express elaborate constraints on a value.

Table 3-1 shows the most commonly used tokens in regular expressions.

SqlDiffFramework User Guide Searching and Filtering

April 30, 2010 Page 23

Token Description

^ Anchor to the start of a string

$ Anchor to the end of a string

. Match any character except newline

[...] Match any character in the specified range

(...) Group part of an expression

{m,n} Preceding expression must occur at least m times and at most n times

| Match one of alternate expressions

* 0 or more occurrences of preceding expression

+ 1 or more occurrence of preceding expression

? 0 or 1 occurrences of preceding expression

\w Match any letter or digit

\s Match any whitespace character

\S Match any non-whitespace character

\d Match any digit

Table 3-1 Commonly Used Regular Expression Tokens

Table 3-2 shows some examples using the above tokens. Some regular expressions are

simple and clear; others are far from it: recognizing something as seemingly simple as an e-

mail address depends on what you mean by e-mail address. The last row of the table

encompasses a very broad definition.

Regular Expression Meaning

^.{5}$ value must contain exactly 5 characters

.{5} value must contain at least 5 characters

^\S+$ value may not contain spaces

^-?(?:\d*\.?\d+|\d+\.)$ value must be a number

^\d{3}-\d{3}-\d{4}$ value must be a canonical US phone number

^\w[\w\.]*\@\w+\.\w[\w\.]*$ value must be an e-mail address

Table 3-2 Regular Expression Samples

Searching and Filtering SqlDiffFramework User Guide

Page 24 April 30, 2010

Here are just a few of many good references to learn more about regular expressions:

 Wikipedia (http://en.wikipedia.org/wiki/Regular_expression) has good background

information.

 Expresso (http://www.ultrapico.com/Expresso.htm) is a free GUI-tool for building,

interpreting, and testing regular expressions.

 RegExLib.com (http://regexlib.com/CheatSheet.aspx) has a quick reference chart as

well as a library of regular expressions.

 Zvon.org (http://www.zvon.org/other/reReference/Output/index.html) has an

interactive reference to regular expression tokens.

 Regular-expressions.info (http://www.regular-expressions.info/) has tutorial and

reference material.

http://en.wikipedia.org/wiki/Regular_expression
http://www.ultrapico.com/Expresso.htm
http://regexlib.com/CheatSheet.aspx
http://www.zvon.org/other/reReference/Output/index.html
http://www.regular-expressions.info/

SqlDiffFramework User Guide Searching and Filtering

April 30, 2010 Page 25

3.4.2 Searching the Results Grid

The results grid has a

convenient mechanism

for moving around a

large data set quickly.

Invoking the Quick Find

command (see 4.5.1.10)

opens a mini-dialog at

the bottom of the result

grid, confirming your

primary sort column.

Type one or more

characters in the input

field. As you enter each

character, the current

selection changes to

reflect the first entry

matching the prefix you

have typed. For example,

if you starting typing

with an “L”, the current

selection advances to the

first entry in the sorted

column beginning with

“L”, say “LL Bottom

Bracket” for example. If

you add an “o” to make

it “Lo” the current

selection jumps to “Long

Sleeve”, and so forth—

see Figure 3-7.

This Quick Find is indeed

quick, as it is optimized

to leverage the current

sorting of the result set.

This mechanism

provides a very fast way

of moving around a

large data set. It is

Figure 3-7 Result Grid Quick Find

This storyboard illustrates the process of searching a single

manually sorted column or the primary column of a turbo-sorted

result grid.

Searching and Filtering SqlDiffFramework User Guide

Page 26 April 30, 2010

constrained, however, to sorting done within the application; it does not have hooks into

the sorting done at the target database. There are two ways to sort within the application.

Either click on a column header to sort by that column (see 4.5.1.9), or enable turbo-sorting

to sort by any number of columns (see 3.5). With turbo-sorting, the primary sort column is

available to use with the Quick Find operation.

3.4.3 Filtering the Results Grid

Rather than jumping to different rows in the result grid you also have the option to reduce

the result set within the application; that is, it does not need to communicate with the

database. This actually allows you to apply two levels of filters. First the WHERE clause in

your query is applied at the database, returning a filtered view of a possibly larger dataset.

Next, the WHERE clause of the result grid is applied directly within the grid. This latter

predicate uses a special subset of SQL presented in Table 3-3.

To learn more about using this special SQL dialect in .NET applications see my article

Exploring Secrets of BindingSource Filters at http://www.devx.com/dotnet/Article/34451.

When you specify a filter expression then press the Apply button () the result grid is

immediately updated to reflect the predicate. Furthermore, if you have tandem mode

enabled the partner grid is also updated with the same predicate and, if auto-differencing

is enabled, the difference engine re-evaluates the two grids. Figure 3-8 illustrates the

filtering process starting with a query with 389 rows.

http://www.devx.com/dotnet/Article/34451

SqlDiffFramework User Guide Searching and Filtering

April 30, 2010 Page 27

Category Element Description

Comparison Operators <
>

<=
>=
<>
=

IN
LIKE

less than
greater than
less than or equal
greater than or equal
unequal
equal
contains
matches

Arithmetic Operators +
-
*
/

%

addition
subtraction
multiplication
division
modulus

String Operators + concatenation

Logical Operators AND
OR

NOT
()

both operands must be true
either one or both operators must be true
operand must be false
used to force precedence

Wildcards
Allowed only at the start or end
of a string

* or % match any number of characters

Aggregate Operators SUM
AVG
MIN
MAX

COUNT
STDEV

VAR

sum
average
minimum
maximum
count
deviation
variance

Functions CONVERT
LEN

ISNULL
IIF

TRIM
SUBSTRING

type conversion
string length
returns second expression if first is null
returns one of two values based on an expression
removes leading and trailing white space
returns a portion of a string

References Parent
Child

refers to parent table
refers to child table

Delimiters []
` `
' '

\

wraps column names
wraps column names
wraps strings
wraps dates—used with certain data providers
escapes next character

Table 3-3 SQL Dialect for Grid Filtering

These details were extracted from this MSDN reference page:

http://msdn2.microsoft.com/en-us/library/system.data.datacolumn.expression.aspx.

http://msdn2.microsoft.com/en-us/library/system.data.datacolumn.expression.aspx

Searching and Filtering SqlDiffFramework User Guide

Page 28 April 30, 2010

Figure 3-8 Filtering Sequence

The filter predicate will remain active until you explicitly remove it, even when you load

data from a completely different result set. If a result set does not have the columns

referenced in the filter query it will have no affect on your data, lying dormant until you

load another query that does have the same column names. Remove the filter by either

SqlDiffFramework User Guide Searching and Filtering

April 30, 2010 Page 29

deleting the text in the filter panel and clicking the Apply button (), or just press the

Erase button () in the filter panel.

 TIP: You may apply the filter predicate either by pressing Enter on the

keyboard or clicking the Apply button () on the filter panel. But note

that the former leaves the panel open while the latter closes the panel.

 TIP: If you define a filter predicate with a column that is present in one

result grid but not in its partner and tandem mode is enabled,

SqlDiffFramework will apply the filter in the current grid and notify you

that it does not exist in the partner. To avoid such warnings, use the tandem

override (hold down Control) when you press Enter or click the Apply button

(), so SqlDiffFramework will not attempt to process the partner grid.

Sorting and Turbo-sorting SqlDiffFramework User Guide

Page 30 April 30, 2010

3.5 Sorting and Turbo-sorting

Notice that in Figure 3-2 both queries specify sorting by the single CountryName field
(order by CountryName). You may include any number of fields in the order by clause.
SqlDiffFramework sends what you specify with the rest of the query to the respective
databases where the database engines process the queries, sort the data as you specified,
and return result sets. SqlDiffFramework then compares the result sets line by line.

3.5.1 Re-sorting Case Sensitive Results for Consistency

The most common pitfall of this seemingly straightforward operation is case sensitivity of
data. Oracle, for example, is case sensitive while SQL Server (by default) is not. Therefore
sorting of the data could easily produce different orderings for essentially the same data.

One solution is to change SQL Server's behavior: there are a number of ways to make SQL
Server operate in a case-sensitive fashion. If you have the wherewithal to modify the table
in question, make a column permanently case sensitive. Example:
ALTER TABLE dbo.Customers

 ALTER COLUMN CustID char(8) COLLATE SQL_Latin1_General_CP1_CS_AS NOT

NULL

If your database cannot be changed you could instead specify case-sensitivity in a query.:
SELECT *

 FROM dbo.Customers

 WHERE CustID = @CustID COLLATE SQL_Latin1_General_CP1_CS_AS

 AND CustPassword = @CustPassword COLLATE SQL_Latin1_General_CP1_CS_AS

Or this:
SELECT

 companyName COLLATE SQL_Latin1_General_CP1_CS_AS,

 count(*)

FROM dbo.Customers

GROUP BY companyName COLLATE SQL_Latin1_General_CP1_CS_AS

These and several more techniques are well-documented at Case sensitive search in SQL
Server queries (http://vyaskn.tripod.com/case_sensitive_search_in_sql_server.htm).

A more general solution, however, is to simply ask SqlDiffFramework to sort both results
for you, overriding the sort order received from the databases. Since both result sets will
then be sorted with the same rules—in this case rules of the .NET framework—there can be
no sorting inconsistencies. This is called the turbo-sort feature. When you enable turbo-
sorting, SqlDiffFramework locally sorts the results received from each executed query.

3.5.2 Re-sorting Static Snapshots

Another important use of turbo-sorting is for re-sorting static data, i.e. retrieving result sets
from stored CSV snapshots. When you load a snapshot the currently loaded query is
irrelevant; the result set is determined completely from the snapshot file and the order of
the rows in the file is the order in which they are displayed. However, SqlDiffFramework

http://vyaskn.tripod.com/case_sensitive_search_in_sql_server.htm

SqlDiffFramework User Guide Sorting and Turbo-sorting

April 30, 2010 Page 31

can apply turbo-sorting to local data as well as live data, allowing you to re-sort CSV
snapshots on the fly.

As an example, Figure 3-9 shows snapshots loaded into both editor panes where the data
was originally sorted---then saved—by CountryName. When it is reloaded as in Figure 3-9,
it is still displayed in the same order. Enabling turbo-sorting that specifies sorting by
CountryCode updates the display to that shown in Figure 3-10.

Figure 3-9 Snapshot Data in Native Order

Without turbo-sorting enabled, the snapshot displays data in the same order as it was saved in, in this

case sorted by CountryName.

Sorting and Turbo-sorting SqlDiffFramework User Guide

Page 32 April 30, 2010

Figure 3-10 Snapshot Data With Turbo-sort Applied

Specifying a turbo-sort by CountryCode resorts even static data from a CSV snapshot.

3.5.3 Re-sorting for NULL Consistency

Just as different databases handle case differently, there may also be differences in how

NULL is treated when sorting. Oracle sorts NULLs at the end while SQL Server sorts

NULLs at the beginning—see Figure 3-11.

Figure 3-11 Native Sort Order of NULL

Oracle sorts NULL at the bottom while SQL Server sorts NULL at the top.

SqlDiffFramework User Guide Sorting and Turbo-sorting

April 30, 2010 Page 33

Applying turbo-sorting allows you to compensate for this difference: since turbo-sorting

sorts both result sets locally, the sort rules are the same. The .NET framework sorts NULLs

at the beginning—see Figure 3-12.

Figure 3-12 Turbo-sorting To Compensate for NULLs

By applying turbo-sorting both result sets will put NULL values at the top of the data.

3.5.4 Simple Sorting

If you have need on occasion to just sort by a single column, there is no need to modify

your query and re-execute it: just click on the column header for the field you wish to sort.

SqlDiffFramework re-sorts your data by that column and immediately re-compares it to its

partner editor pane.

 TIP: SqlDiffFramework re-compares immediately upon sorting which is

useful sometimes but may not be optimal in some cases. If you have sizable

result sets and want to re-sort both sides, first disable differencing, click the

appropriate column header on each side to sort both sides, then re-enable

differencing to re-compare the data.

Sorting and Turbo-sorting SqlDiffFramework User Guide

Page 34 April 30, 2010

3.5.5 Turbo-sorting

Turbo-sorting compensates for any lexicographic differences between two databases by re-

sorting both results according to the specifications in their respective queries. To turn

turbo-sorting on or off you simply press the turbo-sort button () – see 4.1.1.7. But

you must also indicate how you want to sort. SqlDiffFramework leverages your existing

order by clause when turbo-sorting. Say you execute two partner queries with native

sorting then realize that there are case sensitivity differences you want to compensate for.

Just press the turbo-sort button to turn on turbo-sorting and re-execute both queries. The

result sets will sort on precisely the same criteria: the elements specified in your order by

clause but this time with internal sorting. If you want to change the ordering with turbo-

sort, edit the order by clause and re-execute.

Turbo-sorting has an additional benefit: it allows you to use the Quick Find feature to move

around the results grid – see section 4.5.1.10 for more details.

Turbo-sorting is more particular about the elements in the order by clause. Each element

must refer to a display name in the result set grid rather than to a database field name. The

display names are determined from the elements of the select clause. Any compound

expressions (e.g. len(name)) must therefore be aliased. Though, for example, SQL Server

could process this query:

select name, len(name)

from accounts

order by len(name)

…SqlDiffFramework can only use the actual column names in the result set. Since an

unaliased column such as that shown above will receive a generic Column n label, it could

not easily be associated with the compound expression. The solution is to require an alias

as in:

select name, len(name) as myLength

from accounts

order by myLength

This allows SqlDiffFramework to convert the specified sort expression of len(name) to a

realized sort expression of myLength. Note that most databases (SQL Server and Oracle, for

example) allow you to use either the actual expression or the alias in the order by clause

itself, so SqlDiffFramework allows this as well. Thus this will also work because the

column name is derivable from the original alias:

SqlDiffFramework User Guide Sorting and Turbo-sorting

April 30, 2010 Page 35

select name, len(name) as myLength

from accounts

order by len(name)

There are some drivers, however (notably the Microsoft Jet driver used by Access as well as

ODBC/CSV connections) that do not allow aliases in the order by clause. In those situations,

you must define the alias but then you must use the original expression in the order by as in

the last example above.

Some valid SQL code will not quite work properly due to a limitation of

SqlDiffFramework. An expression such as this:

SELECT users.name

FROM users

ORDER BY users.name

…is fine for a SQL interpreter but SqlDiffFramework operates on column names or aliases

to column names. Since the resulting column from the above example would be name

SqlDiffFramework cannot match the element users.name in the order by clause to it. The

workaround to this is simply to alias any compound names such as users.name to a simple

name, as in:

SELECT users.name as name

FROM users

ORDER BY users.name

Table 3-4 illustrates a sampling of statements that all work in SqlDiffFramework.

Sorting and Turbo-sorting SqlDiffFramework User Guide

Page 36 April 30, 2010

Description Expression

Unaliased simple name SELECT name FROM NameTable

ORDER BY name

Aliased simple name

ordered by alias

SELECT name as myName FROM NameTable

ORDER BY myName

Aliased simple name

ordered by name

SELECT name as myName FROM NameTable

ORDER BY name

Aliased compound name

ordered by alias

SELECT table.name as myName FROM NameTable

ORDER BY myName

Aliased compound name

ordered by compound name

SELECT table.name as myName FROM NameTable

ORDER BY table.name

Aliased expression

ordered by alias

SELECT len(name) as myNameLength FROM NameTable

ORDER BY myNameLength

Aliased expression

ordered by expression

SELECT len(name) as myNameLength FROM NameTable

ORDER BY len(name)

Delimited simple name

ordered by non-delimited name

SELECT [name] FROM NameTable

ORDER BY name

Delimited simple name

ordered by delimited name

SELECT [name] FROM NameTable

ORDER BY [name]

Aliased, delimited compound name

ordered by delimited, compound name

SELECT [nt].[name] as myName FROM NameTable nt

ORDER BY [nt].[name]

Aliased, delimited compound name

ordered by alias

SELECT [nt].[name] as myName FROM NameTable nt

ORDER BY myName

Table 3-4 Syntactical Variations Acceptable to Turbo-Sorting

SqlDiffFramework is flexible in field name delimiters: you may use square brackets as

shown in the table as well as single quotes, double quotes, or back quotes. Since different

databases have different requirements on these, SqlDiffFramework allows the superset.

Section 3.5.2 stated that when loading local data (CSV snapshots) instead of live data the

query is effectively ignored. That is not quite true: with turbo-sort enabled

SqlDiffFramework processes the SELECT clause to determine the display names and the

ORDER BY clause to determine sort order, just as it does with live data.

Turbo-sorting uses a simple parsing technique for identifying the SELECT and ORDER BY

clauses. Complex queries—those with sub-queries or those containing multiple queries—

could result in an incorrect determination, which typically manifests as a status bar

message indicating missing aliases for certain fields. As one example, the parser expects

that the list of fields in the ORDER BY clause is comprised of everything from the ORDER BY

SqlDiffFramework User Guide Sorting and Turbo-sorting

April 30, 2010 Page 37

literal until the end of the query text. This code violates that, by having a DROP TABLE

statement as part of the cleanup at the end of the query:
SELECT field1, field2, field3

FROM #myTempTable

ORDER BY field1, field2, field3

DROP TABLE #myTempTable

You can provide a hint for such cases where it cannot properly identify the ORDER BY clause

by including special comments demarcating the ORDER BY clause. Note that the hints are

embedded in end-of-line comments but that the comment token is doubled (4 hyphens

rather than 2):
SELECT field1, field2, field3

FROM #myTempTable

---- [ORDERING START]

ORDER BY field1, field2, field3

---- [ORDERING END]

DROP TABLE #myTempTable

Similarly, you can provide a hint for the SELECT clause by itself, or in conjunction with the

hint for the ORDER BY clause. You must include at a minimum the SELECT and FROM keywords:
---- [SELECT START]

SELECT field1 as ClientName, field2 as ClientNumber, field3

FROM #myTempTable

---- [SELECT END]

---- [ORDERING START]

ORDER BY field1, field2, field3

---- [ORDERING END]

DROP TABLE #myTempTable

SqlDiffFramework provides a mechanism that lets you verify your sorting criteria and alias

matching, assisting you in determining whether you need to provide hints or not. Depress

the Alt key when you press the Execute button () and after your query executes you will

see your sort fields and aliases added to the bottom of your query as comments. The above

query, for example, would yield this:
-- SORT FIELDS: field1[ASC], field2[ASC] , field3[ASC]

-- ALIASES: field1=>ClientName, field2=>ClientNumber

Working With Queries and Snapshots SqlDiffFramework User Guide

Page 38 April 30, 2010

3.6 Working With Queries and Snapshots

3.6.1 Organizing Your Files

Figure 3-13 illustrates one convenient directory structure to store both your SQL queries

and saved snapshots. It is not actually necessary that the two SQL directories be direct

siblings, but rather it is important to have separate directories for them. Similarly, the two

snapshot directories should be separate from each other rather than comingled.

Figure 3-13 Directory Structure

Separating SQL scripts and snapshots between target databases allows you to leverage the time-

saving operations of tandem mode.

Within the directory containing SQL queries for database A you will have a set of scripts to

query database A. Since SqlDiffFramework is all about comparison, each of these needs

something to compare to, which will be the corresponding script for database B stored in

its directory. The number of scripts in the two directories, therefore, should typically be the

same. Furthermore, the names of the scripts in the two directories should be the same. So if

SqlDiffFramework User Guide Working With Queries and Snapshots

April 30, 2010 Page 39

you have a query entitled CheckStringLengthsForPartsTable.sql for database A, the

query for database B should use exactly the same name. When you keep the names the

same, you can then make best use of SqlDiffFramework's tandem mode. With tandem mode

enabled, many operations that you perform on one editor pane will automatically be

mirrored in the other. If you scroll down the grid on the left, for example, the right scrolls

down the same amount. More to the point here, if you open

CheckStringLengthsForPartsTable.sql on the left for database A, then the corresponding

query for database B of the same name is automatically opened on the right.

Not only should you use the same names for queries between A and B, but you should also

use the same names for snapshots as you do for queries as this will similarly streamline

loading snapshots. Thus, when you save a snapshot for the same query, name it

CheckStringLengthsForPartsTable.csv for both result sets. Having these four files with

identical base names, you can then load two queries and two result sets with a single file

dialog instead of four separate file dialogs!

As a final tip, the reason that the SQL tree and snapshot trees are separate in Figure 3-13

rather than having the four leaf directories all in one subdirectory is for ease of archiving.

The SQL queries are your source code files, which you may want to manage in a version

control system, while the CSV files tend to be more transient. By having the trees separate

you can more easily operate on just the files you need.

3.6.2 Exporting to Excel

Sending a result set to Excel is one of two techniques for exporting data from

SqlDiffFramework. Once you have executed a query against a live data source, open the

context menu for the result set by right-clicking in the header row of the result grid (see

also 4.5.1.5). The top-level menu will contain an Export to Excel menu item but only if the

application can detect that it is installed on your system. Selecting this Excel export sends

the result set directly to Excel; it does not save it to an Excel file. If Excel is already running,

it just opens a new window with the data. If Excel is not running, SqlDiffFramework

launches and opens a new worksheet with the data.

My initial development environment for SqlDiffFramework was Windows XP with Excel

2003. Though I had two systems with presumably the same environment, one showed the

Excel menu choice while the other did not. From my reading, this may have come about by

the order I installed programs (Office vs. the .NET framework). If you do not have the

menu item to export to Excel and you want it, first check your installed assemblies (see the

last frame of Figure 3-14). You might have some or none of the interop assemblies showing

up in your assembly cache. You can easily update your Office installation through

Add/Remove programs, as diagrammed in the figure. Select the Add or Remove Features

options then make sure you check the box for advanced customization. Turn the .NET

Working With Queries and Snapshots SqlDiffFramework User Guide

Page 40 April 30, 2010

Programmability Support option on, close out of the installer, and you should then have

the assembly after the installer finishes the minor update. (Thanks to Gill Cleeren at

http://www.snowball.be/MicrosoftOfficeInteropExcel+Not+Found.aspx for this tip.)

Another way to get to the same point, I believe, is by manually installing the OfficeXP

primary interop assemblies from http://support.microsoft.com/kb/328912/ .

http://www.snowball.be/MicrosoftOfficeInteropExcel+Not+Found.aspx
http://support.microsoft.com/kb/328912/

SqlDiffFramework User Guide Working With Queries and Snapshots

April 30, 2010 Page 41

Figure 3-14 Ensuring Excel Interoperability

If you do not have the DLL for Excel (bottom frame), open your Office installer from Add/Remove

Programs and navigate to the .NET Programmability Support option for Excel as shown. Update that

item and you should then have the assembly showing up in your assembly cache.

Working With Queries and Snapshots SqlDiffFramework User Guide

Page 42 April 30, 2010

3.6.3 Saving Snapshots

Saving a snapshot is the other technique for exporting data from SqlDiffFramework. Use

the Save Grid button () to generate a snapshot. SqlDiffFramework prompts you with a

standard Save File Dialog, allowing you to specify the path and file name (see 4.3.2.6). A

snapshot is stored as a CSV file so it may be read by any application that understands CSV

format. Note, however, that CSV files generated by SqlDiffFramework have extra

information in the headers to allow restoring the data in a strongly-typed fashion (integers,

dates, etc.) rather than restoring all data as strings. Loading CSV files generated by any

other means does render all columns as just strings.

 TIP: You can sometimes tell just by looking whether numbers in the grid,

for example, are represented as numbers or as strings. But

SqlDiffFramework can also reveal a data type for you at any time: Depress

Control+Shift or Control+Alt then hover over the column header you are

interested in. See 4.5.1.2 for an illustration.

A normal CSV file often includes (though it is not required to) the display names as the

first row of the file. A typical row appears like this:
IdCustomer,ClientName,CreatedDate

The same header row when emitted by SqlDiffFramework to a decorated CSV file, appears

like this:
IdCustomer:System.Decimal,ClientName:System.String,CreatedDate:System.DateTime

More generally, a header row follows this grammatical construction:
<header-row> ::= <element>,<element>,<element>,. . .

For a normal CSV file these are just display names:
<element> ::= <display-name>

But for a decorated CSV file, an element is defined like this:
<element> ::= <display-name> ':' <.NET-data-type>

When you load a decorated CSV file back into SqlDiffFramework the data types are used

internally but not displayed. Loading the same file into Excel or some other application

that reads CSV files, will actually show the full <element> values as the column headers,

including the data types.

3.6.4 Retrieving Snapshots

To SqlDiffFramework, snapshots provide another data source, one that gives you the

ability to track changes from a live data source over time. One scenario where this is very

useful is a development cycle, where there are multiple releases to test over a short time

span. Take a snapshot before each release to obtain a baseline of your data then compare

early and often during your test cycle. This allows you to identify anomalies very soon

after they appear, giving you the best chance to identify who and what caused it.

SqlDiffFramework User Guide Working With Queries and Snapshots

April 30, 2010 Page 43

Each editor pane operates in either live mode or local mode. When you execute a query in

live mode, the query is sent to the database (Oracle, MySql, SQL Server, or ODBC data

source) and the database returns a result set. When you switch to local mode with the

local/live mode switch (see 4.3.1.2) and then execute a query, SqlDiffFramework loads the

snapshot corresponding to the current query. If it cannot properly identify a correlated

snapshot (see 3.6.1) SqlDiffFramework then prompts you to select a file.

Either editor pane may be in live or local mode separately. You therefore have three

operating modes as shown in Table 3-5.

Mode Use

Live vs. Live Compare current data from two different databases

Local vs. Local Review the history of two different databases over time

(assumes you have saved a collection of snapshots for each)

Live vs. Local Analyze the current state of a single data source compared to its

progression over time (assumes you have saved a collection of

snapshots)

Table 3-5 Comparing Live and Local Data Sources

SqlDiffFramework provides a convenience feature when you want to analyze a single data

source on both sides comparing current data with a snapshot, two different snapshots, or

any other analysis you might want to do on the same data source. First set up one editor

pane with mode settings, directory paths, and connection settings, even loading a query if

you wish. Then invoke the Query  Mirror Query command to copy all those settings to

the partner pane – see 4.1.7.5.

Working With ODBC Data Sources SqlDiffFramework User Guide

Page 44 April 30, 2010

3.7 Working With ODBC Data Sources

With ODBC connections, you can extend the reach of SqlDiffFramework to reach into Excel

spreadsheets, CSV or other text files, Access database files, and more. The following

sections describe in detail two of these common data sources, CSV files and Excel files.

You will see shortly (Figure 3-15) that you can query ODBC data sources just like you can

query a database. As you probably know, SQL Server uses T-SQL, Oracle uses PL/SQL.

ODBC data sources use yet another SQL variation, Jet SQL, which uses Microsoft’s Jet

Database Engine (http://en.wikipedia.org/wiki/Microsoft_Jet_Database_Engine) developed

way back in 1992, and most generally known as the language of Microsoft Access. The

official Microsoft reference for Jet SQL is available at http://office.microsoft.com/en-

us/access/CH062526881033.aspx. But perhaps an even more useful reference is this T-SQL

to Jet SQL cross reference, posted on a blog by Jeff Smith:

http://weblogs.sqlteam.com/jeffs/archive/2007/03/30/Quick-Access-JET-SQL-to-T-SQL-

Cheatsheet.aspx. Here you will learn, for example, that instead of substring you must use

the mid function.

What I just stated is fine in theory but not quite as straightforward in practice. Perhaps it is

just that my knowledge of which JET version applies to which type of ODBC connection is

lacking. I found, for example, that though this cross-reference says JET queries use double

quotes for strings, Excel 2003 still requires single quotes, just like T-SQL. Similarly, Excel

2003 uses the percent character for wildcards, not the asterisk character. I suspect that more

recent versions of JET SQL have just been brought more in line with standard SQL, and this

is not reflected on that web page.

3.7.1 CSV Data Sources

You can reload a saved snapshot of a live data source by toggling the local/live mode

switch then refreshing, as described in the previous section. But snapshots are just a special

case of static data that may be retrieved as live data using an ODBC connection. ODBC

connections allow you to treat Excel spreadsheets, CSV files, and other objects as live data

sources. For the case of saved snapshots this gives you more flexibility because you can

engage the data source with a query, whereas just reloading a snapshot, as you learned,

effectively ignores the query and just loads the whole thing.

You define an ODBC connection for a CSV file using the standard ODBC Administrator

utility—see Appendix 5.5. For the case of a CSV file, you specify a target directory in the

ODBC definition. Next, use the connection editor (section 3.9) to apply the connection

within SqlDiffFramework’s context: specifying a data source type of ODBC enables the

Data Source dropdown selector, which shows all the ODBC connections defined on your

machine. Finally, once you close the connection editor select the connection by name in the

http://en.wikipedia.org/wiki/Microsoft_Jet_Database_Engine
http://office.microsoft.com/en-us/access/CH062526881033.aspx
http://office.microsoft.com/en-us/access/CH062526881033.aspx
http://weblogs.sqlteam.com/jeffs/archive/2007/03/30/Quick-Access-JET-SQL-to-T-SQL-Cheatsheet.aspx
http://weblogs.sqlteam.com/jeffs/archive/2007/03/30/Quick-Access-JET-SQL-to-T-SQL-Cheatsheet.aspx

SqlDiffFramework User Guide Working With ODBC Data Sources

April 30, 2010 Page 45

connection selector to point the editor pane to that data source. You can then invoke a

query to retrieve data from any CSV file in the directory pointed to by that ODBC

connection. Examples:

select * from "myfile.csv"

select ServiceCode as Code, Description, [User Name] from [test file.csv]

If you specify an invalid field name, the status bar indicates this with a partially useful

error message—it is not quite clear what “Expected 1” means:
Error "[07002][Microsoft][ODBC Text Driver]Unknown field(s). Expected 1."

But note that the same error message is used for other reasons—for example, if the CSV file

is in Unicode format!

3.7.2 Excel Data Sources

You define an ODBC connection for an Excel file using the standard ODBC Administrator

utility—see Appendix 5.5. For the case of an Excel file, you specify a target spreadsheet in

the ODBC definition. Next, use the connection editor (section 3.9) to apply the connection

within SqlDiffFramework’s context: specifying a data source type of ODBC enables the

Data Source dropdown selector, which shows all the ODBC connections defined on your

machine. Finally, once you close the connection editor select the connection by name in the

connection selector to point the editor pane to that data source. You can then invoke a

query to retrieve data from any sheet, or any named range, within the specified Excel

workbook.

By default Excel creates worksheets Sheet1, Sheet2, and Sheet3 in a new workbook. To

access, for example, all the data on Sheet2 use (note the trailing dollar sign):

select * from [sheet2$]

If your sheet contains disjoint areas, or you are only interested in a portion of the data on a

sheet, assign a name to the target range within Excel (Insert  Name  Define in Excel

2003). Named ranges may be referenced just like ordinary table names from other data

sources:

Working With ODBC Data Sources SqlDiffFramework User Guide

Page 46 April 30, 2010

select [Name] as [Full Name], Created, [Quantity] as "Qty"

from [top10table]

order by Name

For further information on reading Excel data through an ADO interface, see ExcelADO

demonstrates how to use ADO to read and write data in Excel workbooks at

http://support.microsoft.com/default.aspx?scid=kb;en-us;278973.

3.7.3 ODBC Example: Compare Two Excel Files

Microsoft Word provides a powerful differencing utility to compare two versions of a

document and find out exactly what has changed. This is extremely useful, yet the same

facility does not exist for Microsoft Excel. You have seen above how

In this example, the goal is to find differences in two versions of a spreadsheet, named

Book1-NEW.xls and Book1-OLD.xls. Two ODBC data sources are created with similar

names, Book1-NEW-data and Book1-OLD-data. Inside SqlDiffFramework, the Connection Editor

then creates two connections, book1-NEW and book1-OLD. Each side of the main

SqlDiffFramework is then set to one of these connections from the drop-down selector.

SqlDiffFramework conveniently displays both the connection name and the data source

name, as indicated in the figure. Finally, the same query is used on both sides, referencing

all fields from the first sheet in the Excel file revealing, in this case, the single cell that is

different.

You will note that the processes for CSV files and for Excel files described above are largely

the same. Figure 3-15, then, while using an Excel example, is largely applicable whatever

data source you use.

http://support.microsoft.com/default.aspx?scid=kb;en-us;278973

SqlDiffFramework User Guide Working With ODBC Data Sources

April 30, 2010 Page 47

Figure 3-15 ODBC Example with Excel

Create an ODBC connection named Book1-NEW-data to point to the Book1-NEW.xls spreadsheet. Create

a SQLDiffFramework connection named Book1-NEW to point to the ODBC connection. Reference

worksheets and columns in the originating spreadsheet by making the Excel ODBC connection active.

Working in Tandem: Do Two Things At Once SqlDiffFramework User Guide

Page 48 April 30, 2010

3.8 Working in Tandem: Do Two Things At Once

With tandem mode enabled, many operations that you perform on one editor pane will

automatically be mirrored in the other. If you scroll down the grid on the left, for example,

the right scrolls down the same amount. Enable or disable tandem mode with the Tandem

button () on the main toolbar. Whether you have tandem mode enabled or disabled

you may toggle the setting for a solitary operation by holding down the Control key when

you invoke a tandem-aware operation. For example, with tandem mode enabled using the

scroll arrows in the result grid on one editor pane adjusts the partner editor pane in the

same way. If you want to scroll only one editor pane, depress Control first then use the scroll

arrows to adjust only the single grid. Similarly, with tandem mode disabled you can still

scroll both grids by holding Control before using the scroll arrows.

Some tandem actions are initiated by on-screen controls appearing in both editor panes.

Therefore if tandem mode is disabled the control will operate only in its own editor pane.

But other tandem actions are initiated by menu commands, raising the question of which

editor pane the command the affect with tandem mode disabled. In such cases, the action

applies to the most recently active editor pane, the one where you were last typed or clicked

or even just hovered over with your mouse. For example, the Open File menu item, in

tandem mode, opens files for both editor panes. With tandem mode disabled, if you had

just typed in the left editor pane it opens a file in that pane.

It is generally better to use the corresponding keyboard shortcut rather than using the

mouse to open the menu and select a menu item. Consider, for example, if you are working

in the right-hand editor pane. You move the mouse across to the menu bar, but happen to

just cross into the left-hand editor pane as your mouse travels. That makes the left-hand

editor pane the most recently active one, so by the time you open the menu, the Open File

command will act on the left-hand pane.

3.8.1 Tandem Operations

Section 5.4.2 shows a quick reference chart for the editor panes that indicates which

operations are tandem-aware. Details of these are given below, indicating tandem-aware

and solitary operations where appropriate.

3.8.1.1 Load file

Load a new file either with on-screen controls—typing a file path into the current file

selector, selecting a previously loaded file from the current file drop down, or using the file

picker button ()—or menu command (or its keyboard shortcut). See section 4.1.4.3.

SqlDiffFramework User Guide Working in Tandem: Do Two Things At Once

April 30, 2010 Page 49

3.8.1.2 New file

The on-screen New File button ()—and its related actions—are all tandem-aware, as is

the associated menu item. See section 4.1.4.2.

3.8.1.3 Execute query

Execute a query from the menu, its keyboard equivalent, or from the Execute/Refresh

button (). When you edit only one of the two current queries, though, it is natural to just

press F5 to re-execute. But in tandem mode, this will re-execute both queries, which is not

strictly necessary. Instead, use Control+F5 to override tandem mode to solitary mode and re-

execute just that one query. Since executing either one or both queries automatically

triggers the differencing analysis (assuming auto-differencing is enabled), that is sufficient

to re-compare the result set with its partner. But you will have saved not one, but two

steps: executing the partner query and scanning the partner data.

3.8.1.4 Toggle local / live mode

Each editor pane has its own local / live mode switch.

3.8.1.5 Enable auto-execute

Each editor pane has its own auto-execute switch. When enabled, as soon as you load a

query file by any means it is executed automatically.

3.8.1.6 Filter result set

You may apply a local filter to the result set to focus on some particular data.

3.8.1.7 Scroll result set

You may scroll up or down with the vertical arrow keys (↑ and ↓) or Control+Home /

Control+End keys in one grid and have the partner grid mirror the movements. Similarly, the

horizontal arrow keys (→ and ←) scroll wide grids horizontally in one or both grids.

3.8.1.8 Adjust grid row height

You may adjust the height of rows in the result set.

3.8.1.9 Adjust grid column widths

You may adjust the widths of columns in the result set to match the header cells or to

match the data cells in one or both grids.

3.8.1.10 Enable auto-highlight

Each editor pane has its own auto-highlight switch. When enabled, syntax highlighting is

applied automatically to your queries when you type or when you load a file.

Working in Tandem: Do Two Things At Once SqlDiffFramework User Guide

Page 50 April 30, 2010

3.8.1.11 Enable case-sensitive syntax highlighting

The query editor highlights SQL keywords either exactly as they are defined or

independent of case.

3.8.1.12 Enable forcing keywords to upper or lower case

Recognized keywords may be forced to upper or lower case with this setting.

3.8.1.13 Enable auto-completion

Each editor pane has its own auto-completion switch. When enabled, you can invoke the

command-completion facility to select keywords or macros and reduce typing.

3.8.1.14 Enable forcing auto-completed phrases to upper/lower/user case

With this setting, auto-completed words and phrases may be forced to upper or lower case

or to match the case of the prefix you entered.

3.8.1.15 Enable expanding tabs to spaces

Change the action of inserting a tab to insert spaces or vice versa.

3.8.1.16 Set number of spaces for tab expansion

Adjust the number of spaces inserted when the tab key is set to insert spaces.

3.8.1.17 Toggle tab and Control+tab actions

Toggle the actions of tab and Control+Tab between inserting spaces or tabs and moving to the

next control.

SqlDiffFramework User Guide Working with Connections

April 30, 2010 Page 51

3.9 Working with Connections

A connection defines the credentials necessary to connect to a data source.

SqlDiffFramework supports connections to SQL Server, Oracle, MySql, and ODBC. Though

a fairly old technology, ODBC broadens the spectrum of available data sources to include

Access databases, Excel spreadsheets, plain text files and more.

Figure 3-16 Connection Editor Concepts

This exploded view shows the connection editor for a representative data source. Note the particularly

useful test button/status light in the upper right.

The combination test button/status light provides a convenient way to check credentials

without leaving the dialog. The test button's color provides immediate visual feedback. It

starts out as grey (status disabled), and turns orange (status unknown) only after you have

entered data in all the appropriate fields. Of course, the list of appropriate fields varies based

Working with Connections SqlDiffFramework User Guide

Page 52 April 30, 2010

on your entries. For example, if you select Oracle as the database type then you must enter

a username, password, and server, but because Oracle does not have the concept of

database names, the database selector is disabled. After the button turns orange, you may

click it to attempt to connect to the specified system. When the connection succeeds, the

button changes to green; otherwise, it turns red and displays an error indicator (the red

exclamation symbol in Figure 3-16).

The exploded view in Figure 3-16 shows a representation of the connection editor for a

single data source. Within SqlDiffFramework the connection editor can handle an arbitrary

number of data sources and, in fact, lets you import or export a set of connections to port

them between different installations. Figure 3-17 shows actual screen shots of the

connection editor within the application, illustrating settings for three different types of

data source.

With SQL Server, you have the choice of allowing either Windows authentication or SQL

Server authentication. Microsoft recommends using Windows authentication whenever

possible – see http://msdn2.microsoft.com/en-us/library/ms143705.aspx. Windows

authentication validates the user’s currently logged on Windows account to determine

whether the user has access to the given database. SQL Server authentication, on the other

hand, uses the account registry contained within SQL Server itself. So if you select

Windows authentication, you do not need to provide a name and password. As Figure 3-17

illustrates, the username and password fields become disabled with Windows

authentication selected.

http://msdn2.microsoft.com/en-us/library/ms143705.aspx

SqlDiffFramework User Guide Working with Connections

April 30, 2010 Page 53

Figure 3-17 Connection Editor Examples

Depending on your choice of database type and authentication, different fields will be enabled. Here

you see examples for Oracle, SQL Server, and ODBC data sources.

SQL Server and MySql have the concept of separate databases on a given server while

Oracle does not. Therefore, selecting Oracle disables the database drop-down box while

selecting SQL Server or MySql enables it, as shown in Figure 3-17. Similarly, ODBC data

sources require a data source (defined using the ODBC Administrator utility—see

Appendix 5.5) while the other database types do not.

You create a new connection simply by typing a new name in the drop-down at the top.

While it appears as if you are just changing the name, you are in reality making a copy with

all of the settings from the previous instantly copied to the new connection with the new

name, allowing you to create a similar one with little effort. Then go ahead and change any

or all of the values to suit the new connection. To access previously defined connections,

either type an existing name in or select one from the drop-down choices.

Working with Connections SqlDiffFramework User Guide

Page 54 April 30, 2010

To delete a connection use the delete button () in the upper right. Adjacent to that are

the Load and Save buttons allowing you to import or export all of your settings, respectively.

Note that when you load a connection set it replaces any existing connections. If you want

to instead merge your current set with a set to be imported, you must do that outside the

program with any text or XML editor:

(1) Export your current connection set with the Save button.

(2) With a text editor or XML editor open the exported connection set file.

(3) Manually merge the second set in the editor.

(4) Import the combined connection set into the connection editor with the Load button.

Once you load a connection set with the Load button, that connection set becomes part of

your session information that is saved when you close the application and then restored

upon your next invocation.

SqlDiffFramework User Guide Working with Connections

April 30, 2010 Page 55

3.9.1 Passwords

3.9.1.1 Session and Persistent Passwords

Both the load and save operations normally do not include passwords from your

connection set though you may override this. Passwords, if included, are stored encrypted

and the encryption key ties to the specific machine. Thus it is not possible to transfer a set

of encrypted passwords to an installation on a different computer. If, however, you wish to

make a backup or restore from a backup on the same machine, the connection editor is

flexible enough to allow you to include passwords simply by pressing the Control key when

you click Load or Save.

Passwords are only saved with your session information for those connections where you

have checked the Remember my password box near the bottom of the connection editor. If you

do not check the box, the passwords you enter in the connection editor are remembered

only for the duration of the current session and disappear when you close the application.

Storing passwords in your connection set is generally an unsafe practice. It is useful and

common, though, in development or test environments, where SqlDiffFramework is often

used. The next section explains how to require passwords at runtime.

3.9.1.2 Ephemeral Passwords

If you do not enter a password in the connection

editor for a connection that requires one (see next

section), then the first time you select that

connection SqlDiffFramework pops up a login

dialog (Figure 3-18). Information entered in this

login dialog lasts for the duration of the current

session only. If you close the application and

restart it, SqlDiffFramework will present the same

login dialog during startup.

Since the login prompt appears automatically, and

only when the information is missing, you need to

be able to force it to appear in case you want to

make a change. The most common need for this

would be if you entered an incorrect password.

To change the username or password for the current connection, depress the Shift key and

click the current connection name on the connection selector (see 0).

Figure 3-18 Login Dialog

This window pops up when you select

a connection that needs a password

but does not have one stored in your

connection set.

Working with Connections SqlDiffFramework User Guide

Page 56 April 30, 2010

To switch to a different connection and force the login prompt at the same time, depress

the Shift key while selecting a different connection from the dropdown selector of the

connection selector.

3.9.1.3 Determining When a Password is Required

The previous section indicated you will receive a login prompt for connections that require

one.

A password is required if the connection specifies:

 The database type is Oracle

—or—

the database type is ODBC and the ODBC underlying referent is Oracle.

 The database type is MySql

—or—

the database type is ODBC and the ODBC underlying referent is MySql.

 The database type is SQL Server with SQL Server authentication specified

—or—

the database type is ODBC and the ODBC underlying referent is SQL Server

with SQL Server authentication specified.

Or, to look at the converse, a password is not required when:

 The database type (or the ODBC-derived type) is SQL Server with Windows

authentication specified.

 The database type is ODBC and the underlying referent is Excel, Access, text file, etc.

SqlDiffFramework User Guide Working with Meta-Queries

April 30, 2010 Page 57

3.10 Working with Meta-Queries

Meta-queries are queries that provide information about your data (or database) rather

than providing the data itself, queries that might display the database version, list available

databases, find specific tables or columns, or find non-empty tables. The two main sub-

sections that follow describe how to use meta-queries and then how to modify or create

new meta-query templates. (Some of the material for this section first appeared in my

published three-part article series starting with A Unified Approach to Multi-DataBase Query

Templates available at http://www.simple-talk.com/dotnet/.net-tools/a-unified-approach-to-

multi-database-query-templates/).

3.10.1 Using Meta-Queries

Each of these queries is specified separately for each supported database type (currently

SQL Server, Oracle, and MySql). Some—such as identifying the database version—require

no input while others require you to specify parameters like a table name or a column

name. Each meta-query, therefore, is actually provided as a meta-query template. Each

template contains place holders of the form {name} for any parameters that you need to

supply at runtime. When you select a specific meta-query, all the place holders in its

template are mapped to input fields displayed one per line, ready for you to enter values.

http://www.simple-talk.com/dotnet/.net-tools/a-unified-approach-to-multi-database-query-templates/
http://www.simple-talk.com/dotnet/.net-tools/a-unified-approach-to-multi-database-query-templates/

Working with Meta-Queries SqlDiffFramework User Guide

Page 58 April 30, 2010

3.10.1.1 Invoking a Meta-Query

Once you open the

meta-query selector,

drill down through

the query tree on the

left to find the meta-

query of interest. Say

for example, you

wanted to find all

tables that contain a

column named

IdCustomer. Select an

appropriate meta-

query from the

Columns category

and the dialog

generates input fields

for each of the

relevant place

holders. Note that

most queries are

available for each database type but they may generate different field lists. Oracle, for

example, includes the concept of a schema owner while SQL Server includes the notion of

multiple database names. Thus the database field shown in the SQL Server meta-query in

Figure 3-19 is omitted from the equivalent Oracle meta-query.

 TIP: The meta-query selector remembers any values you enter for each

editor pane. Say, for example, that after entering the values in Figure 3-19

you switch to the version meta-query. This query takes no parameters so the

input field list is removed from the dialog. If you then switch back to the

Column Info meta-query, the fields are restored with the previous values

you entered. Even if you close the meta-query selector and later return to it

within the same session, SqlDiffFramework will redisplay your entered

values.

Fill in just as much information as you wish; an unfilled field implicitly matches all

possible values. For those fields you do fill in, you may either use an exact literal or a term

with SQL wildcards. The example in Figure 3-19 lists columns beginning with IdCustomer

due to the presence of the (%) character. It matches not only IdCustomer but

IdCustomerDisabled, IdCustomer_old, etc. You could broaden the search further with

Figure 3-19 Meta-Query Selector

The dialog (showing a SQL Server-specific meta-query) presents queries

available for the current database type in a tree on the left. Selecting one

generates input fields required by that query on the right.

SqlDiffFramework User Guide Working with Meta-Queries

April 30, 2010 Page 59

something like %Id% to match any column with Id in its name or restrict it to an exact name

by omitting the wildcard. See Table 3-7 for all the SQL wildcards available.

3.10.1.2 Manipulating a Meta-Query

When you press the Execute button () your values replace the place holders in the

template, the query executes, and the database returns the result set. The contents of your

query editor are unchanged; you never see the meta-query. Rather, meta-queries are

designed to be used as command extensions to SqlDiffFramework. When you invoke the

menu command to open a new workspace you do not want the application describing to

you how it is going to do that—you just want it to do it. Similarly, when you invoke a

meta-query to find specific tables it just reports the tables found. Normally you do not care

about how it identified those tables. But SqlDiffFramework is, after all, a utility to work

with queries! So unlike regular menu commands, with meta-queries you have the option to

see—and manipulate if desired—the contents of a meta-query: simply depress the Shift key

while pressing the Execute button (). SqlDiffFramework then adds the text of the meta-

query to the end of the query editor.

When you direct SqlDiffFramework to add the meta-query to the query editor (by

depressing Shift) for you to view or change, you have a choice of two representations. The

default representation suppresses universal matches; the alternate representation reveals

universal matches. (Invoke the alternate representation by also depressing the Alt key.) A

universal match corresponds to a field that you leave blank in the meta-query selector. As

indicated above, leaving it blank is implicitly asking for all possible matches on that field.

In the query, a universal match may be specified in one of two ways: implicitly (say

nothing about the field in the WHERE predicate), or explicitly (specify that the field should

return all values with an expression of the form fieldname LIKE "%"). Consider the SQL

Server meta-query in Figure 3-19 filled out with the values shown in the figure.

The default representation with universal matches suppressed is:
SELECT

 ist.table_catalog as Db,

 ist.table_schema as 'Schema',

 so.name as TableName,

 sc.name as ColumnName,

 sc.colstat as IsIdentity

FROM syscolumns sc

JOIN sysobjects so on sc.id = so.id

JOIN INFORMATION_SCHEMA.TABLES ist on ist.table_name = so.name

WHERE ist.table_catalog LIKE 'Customers'

 AND sc.name LIKE 'IdCustomer%'

 AND so.xtype in ('U','V')

ORDER BY so.name, sc.name

The alternate representation with universal matches revealed (and highlighted) is:

Working with Meta-Queries SqlDiffFramework User Guide

Page 60 April 30, 2010

SELECT

 ist.table_catalog as Db,

 ist.table_schema as 'Schema',

 so.name as TableName,

 sc.name as ColumnName,

 sc.colstat as IsIdentity

FROM syscolumns sc

JOIN sysobjects so on sc.id = so.id

JOIN INFORMATION_SCHEMA.TABLES ist on ist.table_name = so.name

WHERE ist.table_catalog LIKE 'Customer'

 AND ist.table_schema LIKE '%'

 AND so.name LIKE '%'

 AND sc.name LIKE 'IdCustomer%'

 AND sc.colstat LIKE '%'

 AND so.xtype in ('U','V')

ORDER BY so.name, sc.name

Why, you may wonder, would you ever want to include universal matches? The answer is:

it depends on your working style. Some people prefer filling out forms (i.e. entering values

directly in the meta-query selector input fields) while others would rather edit the text of a

query directly. For the latter approach, once you select a query in the tree of the meta-query

selector just leave all the fields blank. Depress Shift (to display the query) and Alt (to reveal

universal matches) and press the Execute button (). This gives you a query with every

input field in the WHERE predicate formatted as fieldname LIKE "%". Now you are free to

modify any one or more of them to pare down the result set.

3.10.1.3 The Meta-Query Library

Table 3-6 describes the meta-queries supplied with the application. They are generally

simple in concept but they can be a great aid in learning about a database or just finding

something for which you cannot quite remember the details. Also, they allow you to do

some interesting searches. Say, for example, you wanted to list all identity columns in all

tables in a SQL Server database. The List columns/brief meta-query includes an input field

IsIdentity? that lets you filter a search by this property.

Some of these meta-queries are extremely short; others are deceptively long. Consider the

Show table schema query: in MySql this is just four words, while in SQL Server it is a query

exceeding 250 lines in length! In either case, having them available effectively as extension

commands saves you the effort in looking up how to do them.

SqlDiffFramework User Guide Working with Meta-Queries

April 30, 2010 Page 61

Category Description SQL Server Oracle MySql

System Display DB version Yes Yes Yes

 Databases Yes NA Yes

 Constraints Yes

 Indexes Yes

 Primary keys Yes Yes

 Map primary/foreign keys Yes

 Procedures and functions Yes Yes

 International Characteristics Yes

 Session information/brief Yes

 Session information/details Yes

 Users and Roles Yes

 Currently running statements Yes

Table Row/column counts Yes

 Non-empty tables Yes Yes1

 Space utilization Yes

 Object level details Yes

 Copy a table Yes Yes Yes

Column Column info/brief Yes Yes Yes

 Column info/details Yes Yes Yes

Data Seeds, row counts, and maxima Yes

DDL Show table schema Yes2 Yes Yes

Table 3-6 Standard Meta-Queries
1

 Accuracy depends on when and how often Oracle gathers statistics.

2

 SS2005 or later; limited to 8000 characters per element.

3.10.2 Meta-Query Templates

The previous sections have described how to use meta-queries strictly as commands, and

how to modify them after invoking them. This section presents details about the meta-

query templates, giving you all the information you need to modify the templates

themselves or add new ones.

3.10.2.1 Template Structure

Section 3.10.1.2 showed a filled out meta-query, i.e. after your input data had been applied

to the template. Below you see the original template before data is applied. This template

has five place holders, highlighted for clarity. Notice that each place holder appears in a

predicate with the LIKE operator rather than the equality operator. Using the matching

operator provides flexibility when you supply input values to fill out the place holders: you

Working with Meta-Queries SqlDiffFramework User Guide

Page 62 April 30, 2010

may provide either a specific value for an exact match or include wildcards for a broader

match. (See Table 3-7 for all the SQL wildcards available.)

SELECT

 ist.table_catalog as Db,

 ist.table_schema as 'Schema',

 so.name as TableName,

 sc.name as ColumnName,

 sc.colstat as IsIdentity

FROM syscolumns sc

JOIN sysobjects so on sc.id = so.id

JOIN INFORMATION_SCHEMA.TABLES ist on ist.table_name = so.name

WHERE ist.table_catalog LIKE '{Database}'

 AND ist.table_schema LIKE '{Schema}'

 AND so.name LIKE '{Table}'

 AND sc.name LIKE '{Column}'

 AND sc.colstat LIKE '{IsIdentity?True/False/Either}'

 AND so.xtype in ('U','V')

ORDER BY so.name, sc.name;

Each term surrounded by braces defines a place holder. Each unique place holder drives

the generation of one input field in the meta-query selector when you select a query.

Observe that each input line in Figure 3-19 derives from the place holders specified in this

query. By default, this manifests as a single-line text box for you to type a value. That is the

case with four out of the five place holders here. The final one, IsIdentity?, maps to a set of

mutually exclusive radio buttons representing a Boolean state. Though you could use a

generalized text box to type a 1 or a 0 for a Boolean field, it makes more sense to let the

system handle this for you so you do not waste time accidentally entering, e.g. “Alaska”

when it is meaningless to do so. In this query, the IsIdentity column in the result set is a

Boolean value indicating whether the named column is an identity column or not. The

question mark (?) character in the place holder drives this distinction: any place holder

name ending in a question mark generates a similar set of three buttons. The place holder

name—and the value displayed as the field name on the meta-query selector—is the

portion up to and including the question mark. The remaining optional text specifies the

labels of the three buttons (words separated by virgules) indicating a true value, a false

value, and either value, in that order. If omitted, the defaults of Yes/No/Any are used. You

may specify one, two, or three of these labels. For example {IsIdentity?True/False} would

generate labels of True, False, and Any.

Place holders do not have to be unique in the template. If the query template had, for

example, a line like this:
WHERE {MyFieldName} is null or {MyFieldName} LIKE "{ProductId}"

… then MyFieldName would appear as an input field just once; the value you enter in the

input form is applied to all occurrences of the {MyFieldName} place holder.

SqlDiffFramework User Guide Working with Meta-Queries

April 30, 2010 Page 63

The query template shown above is perfectly adequate except that it is not instrumented

for universal match suppression (section 3.10.1.2). Here is the template in its final form,

including bracketing for universal match suppression. Each place holder is placed within a

suppression region—a portion of the text surrounded with double square brackets. If the

place holder located somewhere within the boundaries of the suppression region receives

no input (i.e. you leave the field blank on the meta-query selector) then the suppression

region is completely omitted from the final query.

SELECT

 ist.table_catalog as Db,

 ist.table_schema as 'Schema',

 so.name as TableName,

 sc.name as ColumnName,

 sc.colstat as IsIdentity

FROM syscolumns sc

JOIN sysobjects so on sc.id = so.id

JOIN INFORMATION_SCHEMA.TABLES ist on ist.table_name = so.name

WHERE [[ist.table_catalog LIKE '{Database}'

 AND]][[ist.table_schema LIKE '{Schema}'

 AND]][[so.name LIKE '{Table}'

 AND]][[sc.name LIKE '{Column}'

 AND]][[sc.colstat LIKE '{IsIdentity?True/False/Either}'

 AND]]so.xtype in ('U','V')

ORDER BY so.name, sc.name;

The boundaries of the suppression region are important for two reasons. First, the brackets

must be placed so that if either the brackets are removed by themselves, or the brackets and

their contents are removed, the remaining text is still syntactically valid. Thus, for the

{Database} place holder, the suppression region is:

 ist.table_catalog LIKE '{Database}' AND

…rather than just:

 ist.table_catalog LIKE '{Database}'.

Second, the boundaries of the suppression region should be placed so that the query

cosmetically has consistent white space whether the brackets are removed by themselves or

removed with their contents. The template above consistently follows this pattern (ignoring

line breaks in the template for simplicity):

preceding-text [[ist.table_catalog LIKE '{Database}' AND]]following-text

No space after the opening bracket and a single space just before the end bracket ensure

there are always single spaces between all words whether any or all of the suppression

regions are suppressed or not, shown here:

SPACE INSIDE SPACE OUTSIDE

Working with Meta-Queries SqlDiffFramework User Guide

Page 64 April 30, 2010

 With input the region remains in place:
preceding-text ist.table_catalog LIKE 'demo_db' AND following-text

 When no input is supplied the region is suppressed:
preceding-text following-text

Notice that the WHERE predicate in the previous query is composed of six clauses, but only

the first five are in suppression regions. If all the fields are left blank when invoking this

query, the five clauses are suppressed leaving the predicate with a single, syntactically

valid clause: WHERE so.xtype in ('U','V'). But consider what happens if all the clauses are

in suppression regions and all are left blank. You would have a WHERE with no clauses at all,

which is not valid syntax. Since a query template should be built robust enough to handle

any combination of inputs, you need to make sure it handles the no-input case as well. A

simple technique for this, borrowed from the toolbox of SQL injection, is to add a

conjunction with an always true clause, e.g.:
WHERE [[isr.routine_catalog LIKE '{Database}'

 AND]][[isr.routine_schema LIKE '{Schema}'

 AND]][[isr.routine_name like '{Procedure/function}'

 AND]]1=1

3.10.2.2 Template Storage in the Library File

Each query template is stored in the default query library, an XML data dictionary. A

complete dictionary entry specifies not just the text of the query but also: the database type;

the query type (which is just a display name for the query); a category (indicating where to

place this query in the query tree of the meta-query selector); and an optional tool tip

(which displays when you hover over the query in the query tree). Here is the complete

entry for the Oracle-variant of the previous query:

<Query>

 <DbType>Oracle</DbType>

 <Category>Column</Category>

 <QueryType>Column info/brief</QueryType>

 <ToolTip>Shows just table and column names for matching

columns</ToolTip>

 <QueryText>

 SELECT table_name as TableName, column_name as ColumnName

 FROM sys.ALL_TAB_COLS

 WHERE [[owner LIKE '{Owner}'

 AND]][[table_name LIKE '{Table}'

 AND]][[column_name LIKE '{Column}'

 AND]]NOT regexp_like(table_name, '[$_]', 'i')

 ORDER BY table_name, column_name

 </QueryText>

</Query>

SqlDiffFramework User Guide Working with Meta-Queries

April 30, 2010 Page 65

The default query library is embedded in the application package. The first time you open

the meta-query selector, SqlDiffFramework creates the query file (QueryLibrary.xml) by

unwrapping the embedded resource. The application stores this and other externalized

resources in the Application Data/SqlDiffFramework directory. The location of your

Application Data directory depends upon the Windows version you are using; you can

identify the precise path using the Help  About menu item.

Important note: The query library file is purged and updated each time you install a new

version of the application unless you have made the file read-only to preserve any

customized changes you may have made.

3.10.2.3 Customizing Meta-Queries

Figure 3-21 on the next page describes the steps to go from the meta-query selector and the
query template library to a finished query instance. The act of opening the meta-query
selector loads it with the set of meta-query templates germane to the current database type,
which is determined from the connection editor. Once you select a specific meta-query
from the query tree the template for that meta-query is scanned for place holders. Each
place holder is turned into an input field on the meta-query selector dialog, either a text
box for general input or a set of radio buttons for Boolean input. You then proceed to fill
out any or all of the input fields provided. When you press execute, your values are
plugged into the template to produce a completed query that is sent off to the current
database. (Note that you will not see the finished query unless you depress the Shift key
when you execute.)

To modify any of the existing meta-queries open the query library file (QueryLibrary.xml)

in a text editor or XML editor and edit its template. To add a new one you only need to

conform to the simple schema in Figure 3-20.

Figure 3-20 Meta-Query Schema

The XML Schema for the query template library file consists of a simple array of queries, where

each query contains 4 or 5 elements. The notations describe how these elements are used.

Working with Meta-Queries SqlDiffFramework User Guide

Page 66 April 30, 2010

That is, the file consists of an unordered array of <Query> elements, each of which must

contain a <DbType>, a <Category>, a <QueryType>, an optional <ToolTip>, and a <QueryText>. The

<Query> elements may appear in any order in the file. They are organized in the query tree

of the meta-query selector (Figure 3-19) first by filtering by the current <DbType> (possible

values for <DbType> are shown in the figure). All the query templates that match are then

grouped and sorted by <Category> as the first level of nodes in the query tree. Finally, each

<QueryType> is listed in the bottom level of the query tree in its respective category. As you

add new <Query> elements you should be consistent with <Category> and <QueryType> values

throughout the file.

Note that if you wish to edit the query library file in an XML-editor that provides guidance

based on the schema, the schema file is included in the same directory containing the

executable SqlDiffFramework.exe file (XML Schema/QueryLibrary.xsd).

 TIP: You will find references in the library to system stored procedures

(sp_some_name) but only internal to some meta-query or as a comment for

suggested alternatives. But you will not find any meta-queries that simply

call a system stored procedure because they lack the desired flexibility in

parameterization. For example, the SQL Server procedure sp_databases

takes no parameters, listing all your databases. The meta-query used to list

databases access the sysdatabases table instead because it can then filter the

results based on your input. A procedure like sp_tables on the other hand,

takes a single, fixed parameter so can provide information only regarding a

single table. The actual meta-query to list tables uses the

INFORMATION_SCHEMA views to again allow appropriate filtering.

SqlDiffFramework User Guide Working with Meta-Queries

April 30, 2010 Page 67

Figure 3-21 Meta-Query Processing

The database type of your current connection (1) determines the available set of meta-queries when

you open the meta-query selector (2). Choosing a meta-query accesses the query template (3) which

generates input fields (4) in the meta-query selector. Your entered values fill the place holders in the

query template to produce a completed query (5).

Working with Meta-Queries SqlDiffFramework User Guide

Page 68 April 30, 2010

3.10.3 Meta-Query Usage Summary

Once you have digested the detailed discussion of meta-queries, the summary in Table 3-7

provides a quick reference to make it fast and easy to find the key details about using meta-

queries and meta-query templates.

Place

holder

Generate a text box {field_name}

Generate Boolean choices

with default labels

{field_name?}

Generate Boolean choices

with custom labels

{field_name?yes_label/no_label/any_label}

Require input for a field {field_name!}

Universal match suppression region [[any SQL text containing a place holder]]

Execution As a silent command Execute

Display query without

universal matches

Shift+Execute

Display query and reveal

universal matches

Alt+Shift+Execute

Input

Wildcards

Percent (%) Any string of 0 or more characters

Underscore (_) Any single character

[characters] or

[character-character]

Any single character within the enumerated

set or the specified range, respectively

[^characters] or

 [^character-character]

Any single character not within the set or

range, respectively

Table 3-7 Meta-Query Usage Summary

SqlDiffFramework User Guide Syntax Highlighting & Keyword Completion

April 30, 2010 Page 69

3.11 Syntax Highlighting & Keyword Completion

3.11.1 Syntax Highlighting

SqlDiffFramework recognizes a number of different SQL language constructs as you type

and highlights them to make the text clearer to read. Section 4.4.2 details each of the

language constructs. This section focuses on keywords, predefined words that are part of the

SQL language. Each database type has a slightly different set of language keywords, so

SqlDiffFramework dynamically adjusts its context depending on what database type you

are using in each editor pane (SQL Server, Oracle, or MySql).

Within each context, keywords are grouped by category: functions, keywords, constants,

and macros. The context maintains style characteristics at the group level, so the words in

each category are all highlighted in the same way, but the highlighting between groups is

different. Constants, for example, are stylized in bold black and Courier while functions

appear in magenta in the default font.

Highlighting is actually a two-step process: recognition and stylization.

3.11.1.1 Recognition

When you pause typing, SqlDiffFramework compares what you have typed with the

defined keywords in the current context. This is the recognition process. If it recognizes the

new word, it moves on to the second step, stylization. By default, recognition occurs

independent of case. So if the context includes the keyword SELECT and you type select,

your typed word will be recognized and highlighted but otherwise unchanged. With the

CaseSensitive setting you can modify this behavior. Setting this to true then requires the

case you type to match the case of the keyword in the context definition: SELECT will then

only match SELECT and not select. To adjust the CaseSensitive setting, open the context

menu by right-clicking in the query editor: Highlighting  Case Sensitive .

3.11.1.2 Stylization and Case Adjustment

By default, highlighting affects only the color and style—but not the case—of the word. For

example, RTRIM, a common SQL function, is rendered in magenta as mentioned earlier. If

you type RTRIM it will be rendered as RTRIM; rtrim yields rtrim; Rtrim yields Rtrim. The word

is colored and styled but the case remains unaltered. You may alter this behavior, though,

via the Highlighting  Keyword submenu on the context menu. You have options to

convert recognized keywords to uppercase or to lowercase. If you specify that keywords

should all be uppercase, then even if you type rtrim it will render as RTRIM.

Syntax Highlighting & Keyword Completion SqlDiffFramework User Guide

Page 70 April 30, 2010

3.11.2 Keyword Completion

Keyword completion increases productivity by saving typing: bring up a list of all words

beginning with the current prefix you have typed with a single keystroke and then click to

insert the one you want. Just as with highlighting, keyword completion involves the same

two-step process, recognition and stylization.

3.11.2.1 Recognition

When you invoke keyword completion a list of keywords appears. The contents of the

completion list depend on the location of the cursor:

 If a partial word or even just a single character precedes the cursor (e.g. wher) and

has multiple possible matches, then the list shows all keywords beginning with the

target prefix you have entered, allowing you to select the one you want.

 If your target prefix has only one possible match, the pop-up list is skipped and the

sole matching word is immediately inserted in your text.

 If the cursor immediately follows whitespace—that is, there is no target prefix—then

all keywords are listed (giving you a rather lengthy list from which to choose).

Note that recognizing the target prefix is always case-insensitive: whether you type WHER,

wher, or even wHeR, they are all treated identically in generating the completion list.

3.11.2.2 Stylization and Case Adjustment

Unless your target prefix had only one possible match, you must next select one choice

from the completion list. Select a word or phrase from the list with keyboard arrows then

press either Space or Enter. Alternatively, use the mouse to scroll then click. Either way, the

completion list closes and the item you selected replaces the target prefix.

Auto-completion does no stylization (color or font); it only involves potential case

adjustments. The case of the auto-completed keyword depends on the rule you have

selected via the context menu. By default, the case of the inserted word is exactly what you

see in the list of auto-complete candidate words, whether upper or lower case. If you see

SELECT in the list, then whether your target prefix is sel or SEL or seL, it is replaced by SELECT.

You may alter this behavior, though, via the Keyword Completion submenu on the

context menu. If you select Uppercase , the word is converted to uppercase regardless of

the case of the defined word and regardless of the case of the prefix you have typed.

Similarly if you select Lowercase , it is converted to lowercase. Finally, if you select

Match user case the case of the inserted keyword changes to match the case of your

target prefix. (More precisely, it matches the case of the first letter of the target prefix.)

Thus, if you type se the completion list displays SECTION, SELECT, SESSION, and others. If you

SqlDiffFramework User Guide Syntax Highlighting & Keyword Completion

April 30, 2010 Page 71

choose SELECT from the completion list, it is converted to select because your target prefix

(se) was in lowercase.

3.11.3 Highlighting and Keyword Completion Interactions

The previous sections introduced a number of settings relating to case sensitivity and case

matching on both auto-highlighting and auto-completion, settable interactively on the

context menu. To use these settings effectively it is important to understand the

interrelations between highlighting (3.11.1) and completion (3.11.2). (If you are just typing

without invoking auto-completion then you only have to be concerned with highlighting.)

Keyword completion occurs first. You type a target prefix, press Control+Space to open the

completion list, select a word or phrase, and the selected word replaces your typed target

prefix. Syntax highlighting follows immediately thereafter. Once a keyword is entered—

whether by you manually typing it or by the auto-completion facility—it is highlighted

according to the settings for syntax highlighting.

The trap to be aware of is when you use a non-default option on case for both keyword

completion and syntax highlighting. If you specify, for example, that keyword completion

should complete words in lowercase but also specify syntax highlighting to highlight

words in uppercase, an auto-completed word will always end up in uppercase by

consecutive application of your rules. Thus, if you type sel or SEL and auto-complete this to

SELECT, the word select will be inserted in lowercase. A fraction of a second later this word

will be recognized by the highlight engine and converted to uppercase. So some

combinations are incompatible but all are available so you may tailor the user experience as

you see fit.

3.11.4 Macros

There are a few general macros included for each supported SQL dialect (SQL Server,

Oracle, and MySql). Macros are defined and used just like regular keywords. That is, you

use the standard keyword completion invoked with Control+Space to insert a macro. The

only differences are that SqlDiffFramework considers an element to be a macro if it

contains any whitespace (and therefore multiple words). Also, any elements with place

holders are macros.

3.11.4.1 Anonymous Macros vs. Named Macros

Macros come in two varieties: anonymous macros and named macros. An anonymous macro

has no name, just a body; the macro body itself appears in the auto-completion list. A

named macro has both a body and a name, and the macro name appears in the auto-

completion list. For example, say you have an anonymous macro that inserts the phrase

SELECT * FROM. When you type SEL then press Control+Space, the text of the macro appears

among the displayed choices (see the second item in Figure 3-22). Note that if a macro is

Syntax Highlighting & Keyword Completion SqlDiffFramework User Guide

Page 72 April 30, 2010

too long it is truncated and marked with an ellipsis to indicate there is more that is not

visible (fourth item in Figure 3-22). Anonymous macros therefore should be relatively

short; longer ones should be defined as named macros.

Besides length, the other reason macros would be defined as named macros is positioning.

Named macros appear in the keyword completion list sorted by the name whereas

anonymous macros are sorted by the macro body. If the anonymous macro example above

was instead a named macro with a name of ALL or ALL-FIELDS (since the meaning of the

asterisk may not be obvious to everyone) the macro will show up in the list alphabetized

under A for ALL rather than S for SELECT.

Macros are intermixed

with simple keywords in

the list; macro names for

named macros, macro

bodies for anonymous

macros, and keywords

are all sorted together.

Named macros, then, are

often indistinguishable

from regular keywords

at first glance—consider

the keyword SELECT

compared to the named

macro SELECT-FULL in Figure 3-22. It is only when you choose an entry from the completion

list and it appears in your editor that you know you have just used a macro. The keyword

will appear unaltered; the named macro will have the macro body rather than the macro

name that was in the list.

3.11.4.2 Macro Templates

You can insert an arbitrarily complex query or query fragment with just a few keystrokes.

The query as it exists in the library is called a query template because it may contain place

holders to be filled out upon use. Macros are not required to have place holders but

generally macros with place holders are more versatile and will be used more often than

those without. A place holder is delimited by the _{ and }_ brackets and may contain only

letters, digits, or underscores. Figure 3-23 shows an example of instantiating a macro

named SELECT-FULL containing 6 place holders.

Figure 3-22 Keyword Completion List

Anonymous macros may be distinguished from regular

keywords by the presence of whitespace and/or place holders.

Named macros, however, are indistinguishable in the list.

SqlDiffFramework User Guide Syntax Highlighting & Keyword Completion

April 30, 2010 Page 73

Figure 3-23 Instantiating a Macro

After typing the target prefix “sel”, Control+Space opens the completion list with candidate values;

choosing the SELECT-FULL macro name inserts its corresponding macro body into the query editor

with place holders highlighted.

Start by typing the first one or more letters of the macro name, in this case SEL. Press

Control+Space to display the completion list. Choose the SELECT-FULL macro name.

SqlDiffFramework replaces the target prefix with the body of the macro, which is a

template for a SELECT query. Once the body of the macro is inserted in the editor the syntax

highlighting engine processes the text, highlighting according to the style characteristics

defined in the current context for each keyword. In this case recognized keywords are

highlighted in blue and place holders are shaded in green.

But clearly you are not finished yet. Your goal is to transform this query template:

select _{fields}_

from _{datasource}_

where _{predicate}_

group by _{field}_

having _{aggregate}_

order by _{field}_

to a specific query instance that you can actually execute, something like this:

select x.ProductId, y.Yield, y.Frequency

from products x join data y on x.ProductId = y.ProductId

where y.yield > 100

group by x.Color

order by x.ProductId, y.Yield, y.Frequency

Syntax Highlighting & Keyword Completion SqlDiffFramework User Guide

Page 74 April 30, 2010

SqlDiffFramework provides two shortcut keys to make it quick and easy to fill out the

template:

F4 advances to the next place holder and selects it, allowing you to just type to replace it. So

do a sequence of F4, type something, F4, type something, etc. to fill in all the place holders.

 TIP: You do not have to edit the place holders in order: skip a place holder

by just pressing F4 again to advance to the next one. Once you reach the last

place holder the next F4 wraps back to the first unaltered place holder.

To optimize typing Control+Shift+Delete deletes the line containing the currently selected

place holder. Templates may often have more than you need since it is often quicker to

prune than to add. Assuming that a template is designed with each place holder on a

separate line (as in the above example), when you land on a place holder in a line that you

do not need, just press Control+Shift+Delete to delete its containing line. The above example

query instance does not use the HAVING clause; the line containing it was removed after

advancing to the place holder then pressing Control+Shift+Delete.

 TIP: The Control+Shift+Delete key combination is not just for use with macros:

it deletes the currently selected range but snaps to line boundaries. See 4.4.1.19

for more details.

SqlDiffFramework User Guide Syntax Highlighting & Keyword Completion

April 30, 2010 Page 75

Table 3-8 shows the sequence of steps to fill in the sample query template above.

Original template inserted
select _{fields}_

from _{datasource}_

where _{predicate}_

group by _{field}_

having _{aggregate}_

order by _{field}_

F4 advances to first place holder
select _{fields}_

from _{datasource}_

where _{predicate}_

group by _{field}_

having _{aggregate}_

order by _{field}_

Type the desired phrase.
select x.ProductId, y.Yield, y.Frequency

from _{datasource}_

where _{predicate}_

group by _{field}_

having _{aggregate}_

order by _{field}_

Select the phrase just typed and copy it.
select x.ProductId, y.Yield, y.Frequency

from _{datasource}_

where _{predicate}_

group by _{field}_

having _{aggregate}_

order by _{field}_

Skip to the next place it is needed; in this

case press F4 five times.

select x.ProductId, y.Yield, y.Frequency

from _{datasource}_

where _{predicate}_

group by _{field}_

having _{aggregate}_

order by _{field}_

Paste the copied phrase here.
select x.ProductId, y.Yield, y.Frequency

from _{datasource}_

where _{predicate}_

group by _{field}_

having _{aggregate}_

order by x.ProductId, y.Yield, y.Frequency

Press F4 to advance to the next place

holder; this wraps back to the first unfilled

place holder.

Type or Control+Shift+Delete then F4 again

until finished.

select x.ProductId, y.Yield, y.Frequency

from _{datasource}_

where _{predicate}_

group by _{field}_

having _{aggregate}_

order by x.ProductId, y.Yield, y.Frequency

Table 3-8 Sample Sequence Filling in a Query Template

Syntax Highlighting & Keyword Completion SqlDiffFramework User Guide

Page 76 April 30, 2010

3.11.5 Customizing Syntax Highlighting and Macros

Each SQL dialect supported (SQL Server, Oracle, MySql) has an associated context file that

specifies the style characteristics of keywords, comments, variables, strings, numbers, and

place holders. It also specifies the list of language keywords and macros. Each default

context file is embedded in the application package. The first time you connect to a

database of a given type, SqlDiffFramework creates the context file (Context-dbtype.xml)

by unwrapping the embedded resource. The application stores this and other externalized

resources in the Application Data/SqlDiffFramework directory. The location of your

Application Data directory depends upon the Windows version you are using; you can

identify the precise path using the Help  About menu item.

Important note: All context files are purged each time you install a new version of the

application unless you have made a given file read-only to preserve any customized

changes you may have made.

To modify any of the existing context files open the appropriate context file in a text editor

or XML editor. The context definition must conform to the XML Schema shown below. This

schema file is included with SqlDiffFramework so you can validate any changes you make,

or if your XML editor can make use of it to provide guidance while editing. The schema file

is included in the same directory containing the executable SqlDiffFramework.exe file (XML

Schema/ContextDefinition.xsd). Figure 3-24 illustrates the schema here for your

convenience.

SqlDiffFramework User Guide Syntax Highlighting & Keyword Completion

April 30, 2010 Page 77

Figure 3-24 Context Definition Schema

Syntax Highlighting & Keyword Completion SqlDiffFramework User Guide

Page 78 April 30, 2010

3.11.5.1 Context File Structure

Under the root EditorContext node, there is a Delimiters node containing all the details

except for keywords and macros, which are under the WordsAndPhrases node. Note that all

nodes under EditorContext are optional; you only have to include nodes when you want to

specify a value different from the default. The default for the special SeparatorTokens node

is shown below; the defaults for all the other nodes are shown in section 4.4.2.

The Delimiters element allows you to define styles for comments, strings, variables,

separators, numbers, and place holders, and to define delimiters for all of these except

numbers (which are just occurrences of 0 through 9). Some of these may have only one

delimiter (e.g. block comments, end-of-line comments, and place holders) while others may

have any number (strings, variables, and separators). You define, for example, an arbitrary

number of string delimiters by adding a QuoteToken node for each (typically single quote

and double quote). Similarly you may have an arbitrary number of variable designators by

adding a VariableToken node for each (e.g. @ for parameters and @@ for system variables in

SQL Server), where each VariableToken represents a sigil.

Separator tokens are unique in that each is always a single character and you do not specify

any styling—they are present for proper parsing of language elements. You can specify any

number of separator characters but you do this by specifying a single string in the

SeparatorTokens node containing all of the separator characters. The default string is usually

sufficient, so unless you want to modify the default you do not need to include the node at

all. The SeparatorTokens default is the set of non-alphabetic, non-numeric characters:

`-=~!@#$%^&()+[]\\{}|;':\",./<>?(return)(newline)(tab)(space)

The WordsAndPhrases element specifies keywords and macros in one or more WordGroup

nodes. You could include all under a single group; specify multiple groups to apply

different styles to different keywords, e.g. red and bold for function names, blue and italic

for command words, etc. The WordGroup node also takes an optional type attribute whose

only purpose is to label the group when you display the context details via Control+F10. (see

TBD). If you do not provide a type the groups are simply labeled Group 1, Group 2, etc.

Figure 3-25 shows a portion of the SQL Server context file specifying reserved word

groups, each with an explicit type name that is reflected in the context summary dialog.

SqlDiffFramework User Guide Syntax Highlighting & Keyword Completion

April 30, 2010 Page 79

Figure 3-25 Keyword Groups

Type attributes on WordGroup elements are reflected in the context summary, showing how many of

each type are defined.

The Keyword node is the only element the WordGroup may contain. A Keyword node specifies

either a reserved word in the language or a macro. If the latter, then it may contain an alias

attribute (this determines whether it is a named macro or an anonymous macro) and it may

contain a whiteSpace attribute, described next.

3.11.5.2 Controlling Whitespace in Macros

Macro templates may contain one word or many words and extend one line or multiple

lines. SqlDiffFramework provides some flexibility in whitespace between how a template is

defined in the library and rendering that template when you insert it into your editor. That

is, a macro template may be defined on multiple lines in the context file but depending on

its properties it could end up in your editor on multiple lines or on a single line.

The whiteSpace attribute attached to a macro template controls how whitespace in the

context file is processed for that node. The possible values and semantics for this attribute

are borrowed exactly from the XML Schema definitions:

 preserve indicates to retain any white space as it is entered;

 replace replaces each occurrence of a non-space white space character (tab, return,

newline) with an actual space character, effectively merging everything onto a single

line;

 collapse (the default) replaces runs of any white space with a single space and trims

leading/trailing white space.

Macros with place holders should generally be set to preserve (as the SELECT-FULL macro is)

to provide the flexibility of using the Control+Shift+Delete shortcut key to snap to line

boundaries and delete as described earlier.

Syntax Highlighting & Keyword Completion SqlDiffFramework User Guide

Page 80 April 30, 2010

3.11.5.3 Highlighting Styles

Comments, strings, variables and keywords use a common set of attributes, identified as

the fontStyleAttributes attribute group in the schema. This includes:

 the font family (a string indicating the font name as in Verdana or Times New Roman);

 the font color (a string indicating a .NET color name—see

http://www.pardesiservices.com/Softomatix/ColorChart.asp for a reference chart);

 a bold flag (true or false); and

 an italic flag (true or false).

Numbers and place holders, on the other hand, use the fontStyleAttributes_WithBgColor

attribute group. As the name implies, this is a superset of the fontStyleAttributes attribute

group that adds a background color choice (using the same set of color names as the font

color).

See also section 4.4.2 for more on the different highlighting elements.

http://www.pardesiservices.com/Softomatix/ColorChart.asp

SqlDiffFramework User Guide Automating Data Analysis

April 30, 2010 Page 81

3.12 Automating Data Analysis

Up until now you have learned how to manually run a single pair of queries to obtain a

single comparison result. SqlDiffFramework also provides an automation or batch facility

where you may execute any number of query pairs, save snapshots of every result set, and

generate a summary table for all the executed queries.

Open the Batch Execution Palette via the Query  Execute Batch... menu item (Figure

3-26). The top portion of the palette indicates the key details to be used during execution.

Use this information to make sure you are pointing to the correct systems (System row), the

correct input directories (source row), and correct output directories (snapshot row). Note

that in the figure the source row displays an error indicator because the source directory

has not yet been set after a fresh installation—it still shows the default dot, indicating the

current directory. While you could run manual queries with that setting, batch execution

requires you to be more meticulous and provide an explicit path. You do not set the paths

here, though: close the palette, return to the main window, and load a query—any query—

from the appropriate path, on both editor panes. Re-open the palette and you should then

see the source directories filled out.

The snapshot row, as mentioned, indicates where the output is stored, the output being

CSV snapshot files for each query executed. The Snapshot row will similarly show the

default (in this case empty values) until you manually save a snapshot from the main

window. (Note that an error indicator is not present on the snapshot row because the Save

Snapshots checkbox in the lower left corner is disabled.)

Automating Data Analysis SqlDiffFramework User Guide

Page 82 April 30, 2010

Figure 3-26 Batch Execution Palette

The top portion of the palette identifies the dual systems you are pointing to along with the source

directories and snapshot directories. The bottom portion allows you to specify one or more file masks,

identifies the files selected by those masks, and provides a notification window used once you initiate

execution. The source directories have not yet been set so it shows an error indicator and will not let

you proceed.

The middle portion of the Batch Execution Palette allows you to specify one or more file

masks to filter a list of files from the source directory. Enter masks in the left text box and

the list of matched files in the middle text box updates immediately, showing the files

filtered by your masks. With the single default *.* specification, the list will show all files

that are in both source directories—since comparison requires two queries, any file in one

source directory that does not have a partner file of the same name in the other source

directory is ignored.

A single mask may contain standard Windows wildcards (i.e. question mark or asterisk) to

specify multiple files to match. You could use *.* to match all files, or something more

specific, such as *.sql or Cr*.sql, etc. Sometimes it is difficult or impossible to specify a

single mask to collect all the files you want, though, so you may use multiple masks as

well. Separate each mask with lines (i.e. just press return in the input box), commas, spaces,

or vertical bars.

Once you are satisfied with your list of files and the connections, press Execute. The large

text box to the right of the file list displays the status of the run, indicating each file as it

processes it. Starting execution also opens the batch results pane shown in Figure 3-27. You

may manually open this results pane in advance—or at a later time after you have closed

SqlDiffFramework User Guide Automating Data Analysis

April 30, 2010 Page 83

it—using the Show Results button in the lower right of the palette (Figure 3-26). Also, the

Cancel button becomes enabled upon starting execution so that you can abort the batch run

if desired. Note that cancelling does not interrupt a running query but rather stops after the

currently executing query comparison finishes. Just closing the execution pane will not

abort the batch run; you must use the Cancel button if you wish to cancel.

Figure 3-27 Batch Execution Results

This panel displays a summary of all the queries executed so far, one row per comparison. It

duplicates the information from the main window detailing the quality of the match, including the

total percentage and the individual numbers for added, missing, and changed rows.

As shown in Figure 3-27, the results pane enumerates each file, the record count for the left

editor pane and the right editor pane, then the match quality statistics—the same

information displayed in the results toolbar (section 4.1.2). The match percentages are

color-coded here: green indicates a perfect match, yellow indicates 99% or better, and red is

used for anything less.

Referring back to the Batch Execution Palette (Figure 3-26) there are two more options for

executing batches: Flag non-zero lets you alter the semantics of the result grid from flagging

differences to flagging any results any invalid. That is, instead of running queries that

return the “good” data and then compare the left and right data results, you may elect to

run queries that return “bad” data. For example, identifying product IDs where the color

field references a non-existent color, identifying duplicate records in a table, etc. With a set

of queries designed to ferret out bad data, any returned results are invalid. When you

enable this checkbox, any non-zero results are flagged on the count columns, as shown in

Figure 3-28.

Include orphans refers not to orphans in your data but orphaned queries, i.e. queries that

exist only on the left or only on the right. Normally you need dual queries to do a

Automating Data Analysis SqlDiffFramework User Guide

Page 84 April 30, 2010

comparison but on occasion you may want to see a count of something in with your results.

Or, more likely, when looking for bad data with Flag non-zero, the Include orphans option

lets you look independently on both sides and report all the results together. Figure 3-28

shows the effective use of both of these options together. Where orphans exist, most values

in the table are grayed out since you are no longer considering differences.

Figure 3-28 Batch Results Including Orphans

Normally batch processing requires matched queries for the left and right data sources. You may

override this using the Include Orphans checkbox on the setup form, which then includes all files on

both sides matching the file masks. Differencing details are not applicable for such files, so they are

grayed out for orphans.

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 85

4 Understanding SqlDiffFramework Components

4.1 Working with the Application

Figure 4-1 shows an exploded view of SqlDiffFramework. The main application window

contains menus and a two toolbars at the top, and a common status bar at the bottom. The

main body of the window consists of two identical Editor Panes (see 4.1.4) each of which in

turn consists of a Query Editor (see 4.4) for input and a Result Grid (see 4.5) for output.

Figure 4-1 Components of SqlDiffFramework

Starting from the left, the main application includes menus and toolbars at the top; a status bar at the

bottom. It contains two identical Editor Panes, each of which contains a Query Editor for input and a

Result Grid for output.

There are two toolbars in the main window, the control toolbar and the results toolbar. They

are positioned in the same row initially but you are free to relocate them, either stacking

them at the top of the window or even to the sides or bottom of the window. Just drag the

handle at the extreme left edge of each to move them.

Working with the Application SqlDiffFramework User Guide

Page 86 April 30, 2010

4.1.1 SqlDiffFramework Control ToolBar

Figure 4-2 Exploded View of Application's Control ToolBar

4.1.1.1 Next Difference

Moves down to the next difference, scrolling as necessary, but does not go beyond the last

difference. The difference position indicator (see 4.1.2.1) updates to reflect the movement.

If the current difference engine has reported differences where there are none (a false

positive), a single invocation of this command will continue hunting through subsequent

differences until it finds a real one. You may suppress this hunt mode by holding down the

Shift key when you click the button.

You may adjust the behavior of this command to act only on a subset of the difference

categories (added, missing, changed) using the results toolbar (see 4.1.2.6).

Alternatives: Alt + ↓ or menu command (see 4.1.6.1)

4.1.1.2 Previous Difference

Moves up to the previous difference, scrolling as necessary, but does not go beyond the

first difference. The difference position indicator (see 4.1.2.1) updates to reflect the

movement.

If the current difference engine has reported differences where there are none (a false

positive), a single invocation of this command will continue hunting through antecedent

differences until it finds a real one. You may suppress this hunt mode by holding down the

Shift key when you press the button.

You may adjust the behavior of this command to act only on a subset of the difference

categories (added, missing, changed) using the results toolbar (see 4.1.2.6).

Alternatives: Alt + ↑ or menu command (see 4.1.6.2)

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 87

4.1.1.3 First Difference

Moves to the first difference, scrolling as necessary. The difference position indicator (see

4.1.2.1) updates to reflect the movement.

Alternatives: Alt + Home or menu command (see 4.1.6.3)

4.1.1.4 Current Difference

Moves the current difference into view in case you have scrolled it off-screen.

Alternatives: Alt + Enter or menu command (see 4.1.6.4)

4.1.1.5 Last Difference

Moves to the last difference, scrolling as necessary. The difference position indicator (see

4.1.2.1) updates to reflect the movement.

Alternatives: Alt + End or menu command (see 4.1.6.5)

4.1.1.6 Set Current Difference

Sets the current difference near the currently active cell. That is, you may advance the

current difference by an arbitrarily large step rather than the single steps available on the

previous/next difference commands.

If you have selected more than one row, the first row is used as the target.

The difference position indicator (see 4.1.2.1) updates to reflect the movement.

Alternatives: Alt + . or menu command (see 4.1.6.6)

4.1.1.7 Toggle Turbo Sort Mode

This mode switch () enables or disables turbo-sort mode. When you enable turbo-

sorting, SqlDiffFramework locally sorts the results received from each executed query.

Turbo-sorting compensates for any lexicographic differences between two databases by re-

sorting both results according to the specifications in their respective queries. See 3.5 for

details on sorting and turbo-sorting.

4.1.1.8 Toggle Tandem Mode

This mode switch () enables or disables tandem mode. When you enable tandem

mode, many operations that you perform on one editor pane are automatically mirrored in

its partner, including loading, executing, scrolling, and much more. See 3.7 for details on

tandem operations.

4.1.1.9 Toggle Auto-Differencing Mode

This mode switch () enables or disables differencing mode. Additionally, it includes

a drop-down selector that lets you switch among three separate differencing engines. When

Working with the Application SqlDiffFramework User Guide

Page 88 April 30, 2010

enabled, a differencing engine automatically compares both result sets whenever you

refresh one or both grids. If you initiate a tandem action to execute both queries, the

differencing analysis does not begin until both queries have executed. But if you execute a

query in just one editor pane the differencing engine compares result sets as long as there is

a second result set to compare to. Furthermore if you turn off differencing with this switch,

the difference engine will automatically perform analysis as soon as you turn it back on as

long as there are two result sets to work with. Switching difference engines also performs

an immediate re-analysis. Note that this does not require re-executing the queries, only re-

analyzing the existing data so it is a bit faster.

Each of the three differencing engines performs differently and you may find, through

experimentation, one that works best for you. The Tauberer engine is often faster than the

Potter engine on large data sets, but Tauberer is prone to false positives with highly

dissimilar data sets. The Hertel engine is the most memory intensive; as you work with

larger and larger data sets Hertel will report out of memory well before the others.

Regarding false positives just mentioned, SqlDiffFramework cannot suppress them but it

does two things to ameliorate their effect. First, you will see an asterisk attached to the

changed row count (4.1.2.5) on the results toolbar indicating one or more false positives

have been detected. Second, when you navigate among differences with the next/previous

difference menu command or keystroke and land on a false positive it will skip it and

move on to the next real difference (see 4.1.1.1).

4.1.1.10 Show Progress Monitor

During normal operation the progress monitor

appears automatically whenever differencing

analysis runs. Depending on the complexity of

your queries and the size of your data, it may

take up to several minutes to complete a full

analysis so the progress monitor provides some

visual feedback. When analysis is complete the

progress monitor is turned off. In case you want

to review the numbers it reports, this button

() lets you see it again.

SqlDiffFramework does not currently run its

time-consuming tasks as background operations

(though it should!). Even so, it does provide some limited capability to cancel between

steps via the progress monitor.

Figure 4-3 Progress Monitor

As the data analysis may take up to

several minutes, SqlDiffFramework

reports the progress of each step.

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 89

4.1.2 SqlDiffFramework Result ToolBar

Figure 4-4 Exploded View of Application's Result ToolBar

4.1.2.1 Difference Position Indicator

This reflects movements among difference sections as performed by the Next Difference,

Previous Difference, etc., commands discussed in the previous section. Note that difference

navigation movements, however, do not affect the current record number (section 4.3.2.1)

as they do not change the active cell. Hover over the current difference indicator to see how

many rows are in the current difference on both the left and right editor panes.

4.1.2.2 Match Quality (%)

This indicates numerically how good the match is between the left pane and the right pane.

The number is calculated by first combining the row count of the left result grid and right

result grid to find the total rows. Then the total number of difference rows are counted on

both left and right sides, whether they are changes or additions. The percentage is then

simply the total count less the difference count all divided by the total count. Hover over

the indicator to see the total number of rows with mismatches out of the sum of rows from

both left and right editor panes.

4.1.2.3 Count of Added Rows

The added row count is relative to the left result grid. For each difference section, if the

count of rows on the left is greater than that on the right, that difference is added to a

cumulative total, reported in this field. The Added label is actually a button that allows you

to refine behavior of the difference navigation keys—see 4.1.2.6.

4.1.2.4 Count of Missing Rows

The missing row count is relative to the left result grid. For each difference section, if the

count of rows on the right is greater than that on the left, that difference is added to a

Working with the Application SqlDiffFramework User Guide

Page 90 April 30, 2010

cumulative total, reported in this field. The Missing label is actually a button that allows you

to refine behavior of the difference navigation keys—see 4.1.2.6.

4.1.2.5 Count of Changed Rows

For each difference section, the smaller of the number of rows in the left result grid and the

right result grid is added to a cumulative total to arrive at the changed row count. Taking

the smaller of the two reflects that both sides have that many rows that are changed; the

“leftover” rows on the side with a larger count are already included in either the added

row count or missing row count. The Changed label is actually a button that allows you to

refine behavior of the difference navigation keys—see 4.1.2.6.

4.1.2.6 Difference Navigation Shortcuts

.By default, the Next Difference button () (4.1.1.1) advances from the current difference to

the very next one. Thus, if you are on difference 42, you will advance to difference 43.

Similarly, the Previous Difference button () (4.1.1.2) moves the other direction. But if, for

example, you have a preponderance of just one of the three categories (added, missing,

change) it is tedious to hunt for the few instances of one of the other categories.

As a concrete example, assume you have 25 differences

reported of varying sizes, distributed as shown in Table

4-1. There is a preponderance of missing chunks, with

very few added or changed chunks—the result toolbar

reports 4 added, 21 missing, and 5 changed. If you are

interested in examining the added chunks, you need to

repeatedly press the Next Difference button () to

advance to the fifth difference, then again to get to the

eighteenth difference, etc. That is tedious but nothing

compared to, say 500 differences and only two of them

for added chunks—tedium to the extreme!

SqlDiffFramework provides a shortcut mechanism to

let you go from one added chunk to the next. Click on

the Added label (4.1.2.3) in the toolbar to enable category

filtering. Once enabled, the difference navigation

controls (toolbar buttons, keystrokes, or menu items)

then move between just those chunks of the selected

category. Each of the Added, Missing, and Changed

labels on the toolbar may be enabled or disabled

independently. You may use them individually or in

combination.

 Added Missing Changed

1 X

2 X

3 X

4 X

5 X

6 X

7 X

8 X

9 X X

10 X

11 X X

12 X X

13 X X

14 X

15 X

16 X

17 X

18 X X

19 X

20 X

21 X

22 X

23 X

24 X

25 X

Table 4-1 Sample

Distribution of Chunks

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 91

Thus, with just Added enabled, the Next Difference button () will follow this sequence of

chunks:

5  18  22  23

With both the Added and Changed categories enabled, you get:

5  9  11  12  13  18  22  23

In addition to the targeted chunks, the Next Difference () and Previous Difference ()

buttons will each eventually reach a logical boundary (the first chunk or last chunk,

respectively) when searching for the next chunk to display. Once reaching that boundary,

SqlDiffFramework displays that first or last chunk even if it is not in the currently selected

category filter. So the sequences shown above should really begin with 1 and end with 25.

 TIP: The default with no categories enabled is equivalent to having all three

categories enabled as a convenience (since disabling all categories is not

particularly useful).

4.1.3 SqlDiffFramework Status Bar

4.1.3.1 Status DropDown

Application-level messages are displayed in the application’s status bar. (Just above that

are separate status bars for each editor pane.) The last anomalous message is displayed

right on the status bar; previous errors or warnings may be viewed by opening the

dropdown. For long messages, hover over an item in the dropdown list to see a tooltip with

the longer message.

4.1.3.2 Memory Indicator

The memory indicator shows, by default the memory used by the workspace, in

megabytes. Click on the indicator to toggle to display a percentage of available memory.

This indicator starts out black, indicating minimal usage. It changes color as you consume

more memory resources as you work, from black to grey to plum to coral and finally red if

memory tops 75% of available.

4.1.3.3 Legend

Just as an on-screen reminder, each of the difference bar colors is shown in the bottom right

corner; hover over each to see a tooltip describing what the color means.

Working with the Application SqlDiffFramework User Guide

Page 92 April 30, 2010

4.1.4 File Menu

4.1.4.1 New workspace

New Workspace creates a new SqlDiffFramework

window allowing you to compare another pair of data

sets. Each time you invoke this command your current

settings (paths, modes, etc.) are first saved. This has

two side effects. First, since all workspaces use the

same configuration file, a new workspace opens with

the same settings that your original workspace has at

the moment you create the new workspace (rather than

with the settings you had when you opened the very

first workspace). Second, the Edit  Restore Settings… command will be able to restore

settings only back to this save point.

Alternatives: Control + N

4.1.4.2 New Query

New Query unloads the current query file (if any) and deletes the query text from the query

editor. The current file indicator and the query editor will both be blank upon completing

this operation. The application first prompts you if you have any unsaved changes. If you

use the New Query button () instead of the menu command you have additional

options, on the drop-down portion of the button.

 New file With no modifier keys the New Query button () is equivalent to the

menu command.

 New file but retain buffer SqlDiffFramework still disassociates the file name

but it retains the buffer contents. This is a convenient way to start a new query based

on an existing one.

 Generate new query from results SqlDiffFramework clears the query

window, disassociates the file name, and generates a base query from the currently

loaded data, if any. See section 4.3.2.4.

Alternatives: Alt + W or New Query button ()

4.1.4.3 Open Query

Open Query presents a standard open file dialog box allowing you to select a query file

(*.sql) to load into the appropriate pane. The selected file name appears in the current file

indicator and the contents of the file loads into the query editor. The file name is also

entered into the dropdown list attached to the current file indicator for ease of access later

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 93

in the same session. Therefore, any previously loaded file may be reloaded either by using

the open command or by opening the dropdown list. The File Picker button () is

equivalent to the open query menu command.

By enabling tandem mode, you may load both editor panes with a single action. Each

editor pane remembers the last directory from which it loaded a file. When you select a file

to load in one editor pane, the same base name is then attached to the remembered

directory in the other editor pane and that file is loaded, if it exists.

Alternatives: Alt + O or File Picker button ()

4.1.4.4 Save LEFT query, Save RIGHT query

If no filename is associated with the current query, either save command presents a

standard save file dialog box allowing you to specify a query file name. Upon pressing Save

in the dialog box the contents of the query editor are written to the specified file name. If, on

the other hand, a filename is associated with the current query (either by a previous save or

a previous open), then the application immediately saves the query to the same name,

updating and overwriting its previous contents.

 If you use the Save Query button () instead of the menu, you have one more option

when saving: pressing Alt when selecting the Save Query button will let you save the

contents of the query editor to a different name (a standard Save as operation).

Alternatives: Control + F8 and Control + F9 or Save Query button ()

4.1.4.5 Exit

Exit closes the current workspace, saving any changes to your current settings. Note that if

you have multiple workspaces open, each time you close one it overwrites the stored

settings with its settings, so the last one to close determines the settings that the next

invocation of the application will open with.

Alternatives: Alt + F4 or Application Close button ()

Working with the Application SqlDiffFramework User Guide

Page 94 April 30, 2010

4.1.5 Edit Menu

4.1.5.1 Find…

Find… opens a dialog box to search for text in the query editor.

You have the option of matching or ignoring the case of the

term you enter. Furthermore, you may elect to search by plain

text, by wildcards, or by regular expressions. See section 3.4.1.

Alternatives: Ctrl + F

4.1.5.2 Replace…

Replace… opens a dialog box to replace text in the query editor. You have the option of

matching or ignoring the case of the term you enter to search for. Furthermore, you may

elect to search by plain text, by wildcards, or by regular expressions. See section 3.4.1.

Alternatives: Ctrl + H

4.1.5.3 Restore Settings…

Restore Settings… allows you to restore your settings back to the last time they were

saved or to the original factory settings. Be aware that this not only resets modes, paths,

etc., but also wipes out your list of database connections if you restore to factory defaults. If

you have an extensive list of customized connections you should go to the connection

editor (see Query  Edit Connections…), export the DB connections to a file, then do

Restore Settings…, and finally re-import the DB connections you saved.

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 95

Section 4.2 lists all of the relevant settings. The list contains settings that represent both

visual attributes and internal states. Among those representing visual attributes, the user

interface is immediately updated to reflect the restored values except for window state

(4.2.2.1) and window position (4.2.2.2). For example, the state of the Auto-Highlight button

() will revert to the factory default or the last saved (depending on your choice) but the

window position will not revert.

4.1.5.4 Options…

Options… opens the Option Dialog (see 4.2.6) allowing you to adjust some global program

settings.

Figure 4-5 Restore Settings Confirmation Dialog

You may rollback your settings to those with which you began the current

session, or all the way back to when you installed the application.

Working with the Application SqlDiffFramework User Guide

Page 96 April 30, 2010

4.1.6 View Menu

The first two groups of commands involve

navigating among the difference regions once you

load both grids and run a comparison.

4.1.6.1 Next difference

Moves down to the next difference, scrolling as

necessary, but does not go beyond the last

difference. The difference position indicator (see

4.1.2.1) updates to reflect the movement.

If the current difference engine has reported

differences where there are none (a false positive), a

single invocation of this command will continue

hunting through subsequent differences until it

finds a real one. If you use the toolbar button instead of the menu command, it has one

additional capability: you may suppress this hunt mode by holding down the Shift key

when you click the button.

You may adjust the behavior of this command to act only on a subset of the difference

categories (added, missing, changed) using the results toolbar (see 4.1.2.6).

Alternatives: Alt + ↓ or toolbar button, section 4.1.1.1 ()

4.1.6.2 Previous difference

Moves up to the previous difference, scrolling as necessary, but does not go beyond the

first difference. The difference position indicator (see 4.1.2.1) updates to reflect the

movement.

If the current difference engine has reported differences where there are none (a false

positive), a single invocation of this command will continue hunting through antecedent

differences until it finds a real one. If you use the toolbar button instead of the menu

command, it has one additional capability: you may suppress this hunt mode by holding

down the Shift key when you press the button.

You may adjust the behavior of this command to act only on a subset of the difference

categories (added, missing, changed) using the results toolbar (see 4.1.2.6).

Alternatives: Alt + ↑ or toolbar button, section 4.1.1.2 ()

4.1.6.3 First difference

Moves to the first difference, scrolling as necessary. The difference position indicator (see

4.1.2.1) updates to reflect the movement.

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 97

Alternatives: Alt + Home or toolbar button, section 4.1.1.3 ()

4.1.6.4 Current difference

Moves the current difference into view in case you have scrolled it off-screen.

Alternatives: Alt + Enter or toolbar button, section 4.1.1.4 ()

4.1.6.5 Last difference

Moves to the last difference, scrolling as necessary. The difference position indicator (see

4.1.2.1) updates to reflect the movement.

Alternatives: Alt + End or toolbar button, section 4.1.1.5 ()

4.1.6.6 Set current difference

This command sets the current difference near the currently active cell. That is, you may

advance the current difference by an arbitrarily large step rather than the single steps

available on the previous/next difference commands.

If you have selected more than one row, the first row is used as the target.

The difference position indicator (see 4.1.2.1) updates to reflect the movement.

Alternatives: Alt + . or toolbar button, section 4.1.1.6 ()

4.1.6.7 Show progress monitor

The progress monitor normally opens during processing then closes again automatically.

This menu command lets you open it on demand if you want to see, for example, the time

each step took from the last run. See section 4.1.1.10.

Alternatives: Toolbar button ()

4.1.6.8 Expand left pane

You may wish to focus on a single query, or perhaps you have a result set with a lot of

columns. Drag the center splitter rail to the left or right to give more area to the side of

interest. This menu command provides a handy shortcut to move the splitter rail all the

way to the right.

Alternatives: Ctrl+1

Working with the Application SqlDiffFramework User Guide

Page 98 April 30, 2010

4.1.6.9 Expand right pane

You may wish to focus on a single query, or perhaps you have a result set with a lot of

columns. Drag the center splitter rail to the left or right to give more area to the side of

interest. This menu command provides a handy shortcut to move the splitter rail all the

way to the left.

Alternatives: Ctrl+2

Show both panes

In contrast to the previous commands that maximize area for a single query, this command

restores the splitter rail to the center with a single keystroke.

Alternatives: Ctrl+3

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 99

4.1.7 Query Menu

This menu provides actions relating to queries and

database connections.

4.1.7.1 Execute query

Executes the query in the query editor and loads the

results grid if the local/live mode switch is set to live.

If the local/live mode is set to live, the query is sent to

the currently selected database connection (indicated

by the current db value) to retrieve the data. See also section 3.9.

If the local/live mode is set to local, the query is not executed but the results grid is loaded

from a previously saved data set. Even though the results are already fixed and therefore

the query is not driving the results, the contents of the query editor are still related to the

results. Any ignore clause effects what columns are compared and, if turbo sort is active,

the order by predicate of the query is used for sorting. Any CSV file may be used as a data

source, but CSV files saved by SqlDiffFramework carry extra information allowing the data

table to be strongly typed rather than just all strings. See also: Turbo sort, Ignore clause,

CSV import/export.

Whether live or local mode is active, this command operates on one or both editor panes

depending on other conditions. If tandem mode is enabled both editor panes are refreshed.

Otherwise, just the current editor pane [current editor pane = last editor pane the mouse

was in] is refreshed. If the tandem override key is depressed, the setting of the tandem

mode is reversed just for this single operation.

Alternatives: F5 or Execute/Refresh button () on either editor pane.

4.1.7.2 Execute Batch

Execute Batch… opens the batch execution palette, allowing you to run many queries

without user intervention. See section 3.12.

4.1.7.3 Meta-queries…

This command opens up a meta-query dialog, providing a selection of queries that can

provide information about your database schema rather than about your data. Place the

mouse over the editor pane of interest to make it the active pane then invoke the command.

You will be prompted to select a meta-query and then supply its necessary parameters.

Since this menu item is unique in that it acts on the active editor pane, it is advisable to use

keyboard accelerators rather than the mouse to activate this menu item, lest you sweep

Working with the Application SqlDiffFramework User Guide

Page 100 April 30, 2010

over the other editor pane on your way to the menu, inadvertently switching that pane to

be the active one. See section 3.10.

Alternatives: Ctrl + F2 or Meta-Query Dialog button () on either editor pane

4.1.7.4 Edit Connections…

This command opens a connection editor that lets you define connections to any number of

SQL Server, Oracle, or MySql databases as well as ODBC data sources. You can either

manually enter connections or import a previously defined set that you have saved. The

connection editor provides a combination test button and status indicator that lets you

immediately test a connection you are defining. It also has Save and Load buttons for

exporting and importing respectively. See section 3.9.

Alternatives: Ctrl + F3 or depress the Alt key while clicking on the connection selector in

either editor pane (see 4.3.2.3).

4.1.7.5 Mirror Query…

This command opens a dialog allowing you to copy all the settings and the query text from

one pane to the other in one click.

Figure 4-6 Mirror Dialog

Use the Mirror Query command to duplicate settings and query text from one editor

pane to the other. You have a choice on how to set the local/live mode switch during

the process.

As the dialog states, this is commonly used to compare live data with local data; that is,

data from the same source taken in the past vs. current data. The other common use is for

comparing two past snapshots of data. There are two choices available when you perform

the mirror operation. The only distinction between the two buttons is the setting of the

local/live mode switch. The Toggle Local choice makes the local/live mode switch in the target

pane have the opposite state as that in the source pane. The Retain Local choice mirrors the

current setting so that both have the same state.

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 101

Which pane is the source and which is the target is determined by which editor pane is the

current pane at the instant you open the menu item. It is advisable, therefore, to use the

keyboard shortcut to invoke the menu item rather than using the mouse to select the menu

item. If you use the mouse and travel through the other editor pane on your way to the

menu, you then switch which editor pane is the source. There is no direct way to undo this

operation; there is an indirect way that may work, depending on your activity in the

current session. The Edit  Restore Settings… command includes a choice to Restore Last

Saved Settings. That command discards any changes made since the start of the session or

since the last File  New Workspace command, whichever is more recent. So if you do not

mind rolling back your settings to the last saved settings, you can undo the mirror

operation. To limit rollback to just the changes made by the mirror operation, invoke File

 New Workspace just before you invoke Query  Mirror Query…

Alternatives: Ctrl + M

Working with the Application SqlDiffFramework User Guide

Page 102 April 30, 2010

4.1.8 Help Menu

This menu provides a collection of quick

reference sheets and information about the

application. The commands available lend

themselves to natural groupings related to

different levels of operation. Snapshots of each

of these quick references begin on the next

page.

4.1.8.1 Show Main Key Reference

This quick reference sheet shows the command and shortcut keys available at the top-level,

operations that primarily involve both editor panes (navigating data differences, etc.).

Alternatives: Shift + F1

4.1.8.2 Show Editor Pane Key Reference

This quick reference sheet shows commands pertaining to each editor pane individually

(loading and saving inputs and outputs) as well as identifying those commands where both

editor panes may act in unison (synchronized scrolling, synchronized loading, etc.)

Alternatives: Ctrl + F1

4.1.8.3 Show Input Key Reference

Within an editor pane, you use the query editor (the bottom half) for input; this sheet

describes commands for highlighting, formatting, editing, and navigation within the query

editor.

Alternatives: F1 when mouse is over either query editor.

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 103

4.1.8.4 Show Output Key Reference

Within an editor pane, you use the results grid (the top half) for output; this sheet describes

commands for selection, navigation, filtering, and formatting within the results grid.

Alternatives: F1 when mouse is over either result grid.

4.1.8.5 About SqlDiffFramework

The About command displays a variety of useful information about SqlDiffFramework.

The top of the box shows the current release version of the application. The scrolling box at

the bottom includes the versions of all loaded libraries. Note that libraries are only loaded

as needed so if you come back after using the application for awhile you may see more

libraries listed.

In the middle are several hyperlinks: the first two are URLs that take you to the

SqlDiffFramework website in your default browser, while the last two are local file paths

that open Windows Explorer to the indicated paths. (For paths that are too long to fit,

hover over the link and the tooltip will display the full path.)

Figure 4-7 The About Box

Working with the Application SqlDiffFramework User Guide

Page 104 April 30, 2010

4.1.9 Multiple Monitor Support

The output of a single

query may easily be very

wide if you need to

display a lot of columns.

Even when you maximize

your querying tool's

window and have a

widescreen monitor, you

still end up scrolling back

and forth horizontally.

Since SqlDiffFramework

displays two result sets

side by side this

exacerbates the problem

even further. If you have

two monitors side by side,

then at least you could

stretch the application

window across both

monitors so you are no

worse off then displaying

a single query. Windows

gives you a one-click

technique for maximizing

a window to a single

monitor but not for

multiple monitors. To stretch across two monitors you have to un-maximize, reposition the

window to one edge, then carefully drag the opposite edge all the way to the far side of the

second (or third) monitor. SqlDiffFramework gives you back a one-click technique: simply

depress Control when you maximize your window with the standard window maximize

button (). If, as shown in Figure 4-8, the splitter between the two editor panes is right in

the middle (i.e. the two editor panes are equal width), then doing a multiple-maximize

automatically gives you one editor pane on each monitor.

4.1.9.1 Resolution and Orientation Impacts

The multiple-monitor maximization works intelligently across multiple monitors of

varying resolution with a logical side-by-side organization. That is, vertical stacking of

Figure 4-8 Maximize to Multiple Monitors

Use the standard window maximize button—while depressing the

Control key—to maximize the application across multiple

horizontally-aligned monitors in a single click.

SqlDiffFramework User Guide Working with the Application

April 30, 2010 Page 105

monitors is not supported. When you invoke this feature, the resolutions of each screen are

examined; the smallest one drives the height of the maximized window, as shown in Figure

4-9. The figure illustrates one example where you have a larger, desktop monitor on the left

and a smaller, laptop monitor on the right and their tops are aligned. The window expands

to fill the smaller of the two but no further. (If it expanded to fill the larger monitor instead,

you would then have to frequently scroll back and forth vertically to see the whole

window.)

Figure 4-9 Spanning Multiple Monitors with Varying Resolutions

All of the parts and controls of the two editor panes are labeled for easy identification. The query text

shown in the Query Editor (near the bottom) is the contents of the Current File (near the top). The

results of executing the query appear in the Result Grid.

The two editor panes were equal width before the maximization—and are still equal width

after the maximization—but notice that a portion of the right editor pane is on the left

monitor. That is just an artifact of the different screen resolutions. Say, for example, the left

monitor is 1000 pixels wide and the right is 500 pixels wide. Half of the 1500 total puts the

midpoint at 750 pixels, putting it about three-fourths the way across the left monitor, as the

figure shows.

Working with the Application SqlDiffFramework User Guide

Page 106 April 30, 2010

If instead of aligning the window

tops you align the window

bottoms the maximized window

will follow suit; the left monitor

in Figure 4-9 would show its

portion of the window at the

bottom of the screen instead of at

the top.

Use the standard Windows

Display control panel (or other

manufacturer-supplied video

control panel) to set the logical

arrangement of your monitors

(see Figure 4-10).

Also note that even for monitors

of the same size and resolution

there will be some automatic

compensation due to the

Windows taskbar. (The two monitors in Figure 4-8 both show screens filled to the edges

because the taskbar is hidden.)

Figure 4-10 Windows Display Control Panel

Simply drag the monitor icons around the workspace to

align their tops or bottoms, or to set which is on the left

and which on the right.

SqlDiffFramework User Guide Persistent Settings

April 30, 2010 Page 107

4.1.9.2 Maximization Nuances

Assume that you have a non-maximized window (referred to as the normal state) as a

starting point. In the simplest case when you press the maximize button () the window

expands to fill the single monitor (the maximized state); pressing it again restores the

window to the normal state. Similarly pressing from the normal state expands

the window across multiple monitors (the multi-maximized state) and pressing it again

returns the window to the normal state. Table 4-2 outlines the actions that transpire from

each button depending on the current window state.

From this state… With this button… This action happens:

normal Sets the window to maximized.

multi-maximized Sets the window to maximized.

maximized
Sets the window either to normal or to multi-
maximized, depending on its prior state.

normal Sets the window to multi-maximized.

multi-maximized Restores the window to the normal state.

maximized
Sets the window either to normal or to
maximized, depending on its prior state.

Table 4-2 Actions of Maximize vs. Control+Maximize

Because the new state after leaving the maximized state is influenced by its prior state,

mixing with may produce a behavior that is not always what you might

expect. Here are some useful combinations (starting from the normal state):

Toggle max / normal

. . .

Toggle max / normal

. . .

Toggle multi-max / normal

. . .

Toggle multi-max / max

. . .

A conventional window remembers only two sizes: the normal size and the maximized

size. SqlDiffFramework’s windows, however, remember three sizes: normal, maximized,

and multi-maximized. The above combinations show simple keystrokes for moving

between two of the three states. Here is a sequence for switching between all three sizes:

Press this…

… to go to: multi-max max multi-max normal

Persistent Settings SqlDiffFramework User Guide

Page 108 April 30, 2010

4.2 Persistent Settings

SqlDiffFramework uses the standard .NET framework configuration file scheme: it reads

an application-level configuration file (SqlDiffFramework.exe.config) on first launch to

drive its behavior. All users on the same computer read this same configuration file. Once

you close the application the first time, it records any alterations you may have made in a

user-level configuration override file (user.config). On subsequent invocations, the

application reads first the application-level configuration file to establish defaults, then

reads your user-level overrides. The net effect is that many settings that you made on one

invocation are restored on subsequent invocations. This includes the window position, the

state of various buttons, and so forth. While many of these settings are present for the

application itself to manipulate you are free to manipulate them yourself to suit your

needs. Of course, only do this when the application is not running, otherwise your values

will be overwritten when you close the application.

Most settings are user-scoped, meaning that actions you take will directly or indirectly

change these values and store them in your own user.config file. The first sub-section

below details settings that are application-scoped, meaning they are read-only values and

only appear in the SqlDiffFramework.exe.config file. The subsequent sections detail the

user-scoped settings.

4.2.1 Application-Scoped Global Values

These values are application-scoped and appear only in the primary

SqlDiffFramework.exe.config file.

4.2.1.1 UpdateCatalogFile

The UpdateCatalogFile setting specifies the name of the catalog file within the directory

specified by UpdateRepository (section 4.2.1.2). This file records the first use of each user

after a new installation.

4.2.1.2 UpdateRepository

The UpdateRepository setting specifies a search path (a semi-colon separated list of paths);

the first path in the list that points to an actual directory will be used. You may include

more than one path in the repository search path; this allows deploying the file repository

in more than one location. This is useful in two typical scenarios where the search paths

are network drives. The first is as a backup, so if one server is down you have a backup

repository. The second is where you have two deployments that are not physically

networked, e.g. a development environment and a test environment. Simply include both

paths and they will be used appropriately.

SqlDiffFramework User Guide Persistent Settings

April 30, 2010 Page 109

4.2.2 Global States

These states are user-scoped and stored in the individual user.config file for each user.

They are automatically updated based on your use of the application.

4.2.2.1 WindowState

This value records the state of the window (normal, maximized, or minimized) upon

closing the application. If the window is normal or maximized upon closing, that state is

restored. If minimized at closing, the state is restored to normal.

4.2.2.2 WindowPosition

This value records the size and position of the window upon closing the application. Both

size and position are restored upon reinvocation, automatically taking into account a

reduction of monitors or reduction of screen size.

4.2.2.3 UpdateChecked

This timestamp records the last time the application checked for an update. Reminders

about a new version will not occur if this value is less than the number of days specified in

UpdateCheckInterval beyond the current date/time value.

4.2.2.4 NewVersion

This Boolean allows the application to recognize the first run of a new version and to

migrate settings from the previous version, if any. In the application-level configuration file

this value defaults to true. Upon creating the user-level configuration file, it gets a

permanent value of false. Since the latter overrides the former, it will always be read as

false upon subsequent checks.

4.2.2.5 UnreachableRepository

This is a countdown counter (starting at five) that tracks unsuccessful attempts to reach the

repository containing new releases of SqlDiffFramework. Each time you start

SqlDiffFramework it attempts to check for a new release. If it is unable to complete its

check—either due to a network problem or an undefined update location—it decrements

the count by one. If it is successful before this count reaches zero, it resets to five. Once it

reaches zero further update checks are disabled. If you resolve a network issue and want to

reinstitute checking for updates, change this to a non-zero value. Contrariwise, if you never

want to check for updates you can set this value to zero.

4.2.2.6 TandemButton_Checked

This Boolean value records whether the Tandem button () is enabled or not.

Persistent Settings SqlDiffFramework User Guide

Page 110 April 30, 2010

4.2.2.7 TurboSortButton_Checked

This Boolean value records whether the turbo-sort button () is enabled or not.

4.2.2.8 AutoDiffButton_Checked

This Boolean value records whether the Diff button () is enabled or not.

4.2.3 Editor Pane Shared States

These states are user-scoped and stored in the individual user.config file for each user.

They are automatically updated based on your use of the application.

These buttons exist separately in both the left and right editor panes but only a single state

is recorded, the one from the editor pane that is active at the time you close the program; of

course this only matters if the two panes have different values.

4.2.3.1 UseLocalDataButton_Checked

Records whether the access is set to live or local for the last referenced editor pane.

4.2.3.2 AutoHighlightButton_Checked

Records whether the Auto-Highlight button () for the last referenced editor pane is

enabled or not.

4.2.3.3 AutoExecuteButton_Checked

Records whether the Auto-Execute button () for the last referenced editor pane is enabled

or not.

4.2.4 Editor Pane Distinct States

These states are user-scoped and stored in the individual user.config file for each user.

They are automatically updated based on your use of the application.

4.2.4.1 LeftSqlDirectory

The file path for queries for the left editor pane.

4.2.4.2 RightSqlDirectory

The file path for queries for the right editor pane.

4.2.4.3 LeftCsvDirectory

The file path for CSV snapshots for the left editor pane.

SqlDiffFramework User Guide Persistent Settings

April 30, 2010 Page 111

4.2.4.4 RightCsvDirectory

The file path for CSV snapshots for the right editor pane.

4.2.4.5 LeftConnectionName

The selected DB connection name for the left editor pane.

4.2.4.6 RightConnectionName

The selected DB connection name for the right editor pane.

4.2.5 Database Connections

These values are user-scoped and stored in the individual user.config file for each user.

You may explicitly adjust them in the connection editor (Query  Edit Connections...).

4.2.5.1 ConnectionList

This container holds an XML structure defining the set of database connections. Each

connection specifies:

 the connection string needed to establish a connection with a target database;

 the database type (SQL Server, Oracle, or MySql);

 whether to store the password or not;

 a display name and description.

Section 2.2.1 shows examples of the actual format. While you could edit this directly in the

configuration file if needed, it is simpler and safer to use the connection editor (see 3.9).

4.2.6 Program Options

These values are user-scoped and stored in the individual user.config file for each user.

You may explicitly adjust them in the program options dialog (Edit  Options...).

Persistent Settings SqlDiffFramework User Guide

Page 112 April 30, 2010

Figure 4-11 Options Dialogs

These dialogs show the program settings that you may explicitly set; most program settings are

determined indirectly through your use of the application.

4.2.6.1 UpdateCheckInterval

This integer (in days) determines how often the application checks for updates upon

startup. Set to zero to disable checking for updates.

Default=5 days, minimum=0, maximum=365.

4.2.6.2 MaxColumnWidth

This value (in pixels) limits the width of columns when you adjust column widths to fit the

data (see section 4.5.1.2). Since a text column may contain lengthy strings (into thousands

of characters), fitting the data with no constraint on column width would be hazardous.

Default=200 pixels, minimum=50, maximum=5000.

4.2.6.3 CommandTimeout

This value (in seconds) sets the timeout for SQL commands sent to a database. If the

database has not responded within the specified interval, the SQL connection cancels the

operation and notes this in the status bar for the editor pane.

Default=60 seconds, minimum=30, maximum=600.

SqlDiffFramework User Guide Persistent Settings

April 30, 2010 Page 113

4.2.6.4 MaxHighlightedRowsPerChunk

The difference analysis is performed first at the row level, then at the column level for those

rows reporting a difference. A difference chunk consists of the maximum number of

adjacent rows with differences. This integer value specifies the maximum number of rows

in each chunk on which to perform the column-level difference analysis. Very large values

could significantly slow the performance.

Default=50 rows, minimum=0, maximum=10,000.

4.2.6.5 MaxHighlightedRowsTotal

The difference analysis is performed first at the row level, then at the column level for those

rows reporting a difference. This integer value specifies the maximum number of rows in

the entire result set on which to perform the column-level difference analysis. Very large

values could significantly slow the performance.

Default=50,000 rows, minimum=0, maximum=250,000.

4.2.6.6 ShowElapsedTimes

A Boolean flag indicating whether the progress monitor that pop-ups during execution

should list tasks only or list tasks with elapsed time values (see section 4.1.1.10).

Working with the Editor Pane SqlDiffFramework User Guide

Page 114 April 30, 2010

4.3 Working with the Editor Pane

Figure 4-12 Editor Pane

All of the parts and controls of the two editor panes are labeled for easy identification. The query text

shown in the Query Editor (near the bottom) is the contents of the Current File (near the top). The

results of executing the query appear in the Result Grid.

SqlDiffFramework User Guide Working with the Editor Pane

April 30, 2010 Page 115

4.3.1 Top Control Bar Elements

Figure 4-13 Exploded View of Editor Pane’s Top Control Bar

4.3.1.1 Auto-highlight on/off

This mode switch () enables or disables auto-highlighting. Whether the existing text

retains its highlighting or reverts to plain black text depends on the hide/display

highlighting setting (see 4.4.1.4). Manual highlighting (see 4.4.1.5) may also be used instead

of automatic highlighting.

Alternatives: Highlight  Auto-highlight context menu item (see 4.4.1.3).

4.3.1.2 Local/live mode

This mode switch () determines whether data is sourced from a live data source

(database or ODBC data source) or from a CSV file. Local mode is useful to load archival

snapshots of live data that you have saved with the Save Grid button () (see 4.3.2.6) that

you can then compare to other archival snapshots or to live data. This gives you a powerful

mechanism for looking for changes from the same data source.

Note that CSV files generated by SqlDiffFramework have extra information in the headers

to allow the application to convert the data to actual data types (integers, dates, etc.) rather

than treat all data as strings. Thus, if you load CSV files generated by any other means all

columns in the result grid are just strings.

Toggling this mode does not automatically reload the result grid. To refresh the result grid

from the alternate source, use the Execute/Refresh button () (see 4.3.1.4).

Working with the Editor Pane SqlDiffFramework User Guide

Page 116 April 30, 2010

4.3.1.3 Auto-execute on query load

If this mode switch () is enabled when you load a new file into the query editor (see

4.3.1.7) the query will automatically be executed to retrieve the data, either from a live data

source or from a data snapshot depending on the local/live mode () (see 4.3.1.2). If this

switch is disabled and there is a result set from any previous operation showing, then the

background of the query editor changes to pale blue to indicate the query is out of sync

with the result set. (Note that technically any typing in the query editor immediately makes

the query out of sync with the result set as well but presumably you know you are

changing it so the background color does not change.)

4.3.1.4 Execute or refresh

For live mode (see 4.3.1.2): this button () executes the currently loaded text in the query

editor, sending it to the currently selected database connection and displays the result set

from the database in the result grid.

For local mode: this button () loads a CSV data file, which may be a file previously

exported from SqlDiffFramework, or any other CSV file. Note that CSV files generated by

SqlDiffFramework have extra information in the headers to allow the application to

convert the data to actual data types (integers, dates, etc.) rather than treat all data as

strings. Thus, if you load CSV files generated by any other means all columns in the result

grid are just strings.

The first time you load data in local mode you are prompted with a standard file dialog,

allowing you to navigate to the appropriate directory and select a file. SqlDiffFramework

remembers the directory so the next time you do the same operation the file dialog is

already in the correct directory (assuming you have your collection of CSV files in a single

directory). That is standard behavior for .NET applications, of course. What goes above and

beyond that however is this: SqlDiffFramework looks at the base name of your SQL file and

automatically selects a CSV file with the same base name. If it finds a matching file it skips

the file dialog and just processes the file.

Hover over the button when in local mode to see the directory from which local files will

be retrieved.

Alternatives: F5 or Control+F5 depending on whether you want to refresh one or both editor

panes (see Working in Tandem).

4.3.1.5 Meta-query dialog

This button () opens up the meta-query dialog, a dialog designed to give you a selection of

queries that can provide information about your database schema rather than about your

data. The meta-query dialog is specific to the type of database so the current connection of

the editor pane dictates the contents of its meta-query dialog. The meta-query dialog for

SqlDiffFramework User Guide Working with the Editor Pane

April 30, 2010 Page 117

the partner editor pane would have different queries available if its connection is set to a

different database type. Upon opening the dialog, you are prompted to select an individual

meta-query and then supply its necessary parameters. See section 3.10.

Alternatives: The Query  Meta-Queries... menu item opens the meta-query dialog for

the active editor pane (see 4.1.7.3).

4.3.1.6 Current file

This combination drop-down/type-in box serves dual duty, both displaying the currently

loaded query file and allowing you to select a different one. The immediately adjacent

control, the file picker button (), is also available for selecting files (see 4.3.1.7). Any

previous files that you have loaded in the editor pane during the current session are

displayed when you open the drop-down. Alternatively, you could type directly in the text

field; the file you picked loads upon pressing Tab or Enter. Note that as you type the combo

box provides auto-completion—any files from the session history that have the same prefix

are immediately shown as you press each character. Of course, what you type in is not

limited to only what is in the history; typing a new name loads the new file and then adds

it to the history as well.

 TIP: Since all your SQL files will typically be in one directory and the path

to that directory might be several levels down from the root, it could be a lot

of typing if you (a) click in the type-in field and (b) press Delete or

Backspace to clear the field. Instead do this: (a) click in the field; (b) press

End to position the cursor at the end of the existing text; and (c) hold down

Backspace to erase just the file name portion of the path. Then start typing

and the combo box can quickly auto-complete the new file for you.

4.3.1.7 File picker

The file picker button () opens a standard file dialog, allowing you to navigate to the

appropriate directory and select a file. SqlDiffFramework remembers the directory so the

next time you do the same operation the file dialog is already in the correct directory

(assuming you have your collection of SQL files in a single directory). The Save query

command (see 4.3.2.5) uses the same location. The immediately adjacent control, the

current file combo box, is also available for selecting files (see 4.3.1.6).

Alternatives: Control+F6 for the left editor pane and Control+F7 for the left editor pane.

Working with the Editor Pane SqlDiffFramework User Guide

Page 118 April 30, 2010

4.3.2 Bottom Control Bar Elements

Figure 4-14 Exploded View of Editor Pane’s Bottom Control Bar

4.3.2.1 Grid navigation

This is a collection of controls letting you navigate among rows in the result grid. On the

extreme ends you have buttons to move to the first or last row of the grid (keyboard

equivalents: Control+Home, Control+End). Just inside those are buttons to move to the previous

or the next row from your current location (keyboard equivalents ((↑ or ↓). That leaves

the direct access control in the middle. The example in Figure 4-12 shows 1 of 25, indicating

the current record is the first record and that there are 25 records in total. You may move to

any other row simply by typing in the desired record number.

Hover over the total row count indicator to see the data source for the currently displayed

grid. This is handy in two instances. First, although it usually mirrors the current DB server

indicator, when you change the connection via the connection selector, the current DB

server reflects this immediately. This tooltip does not—it always points to the source for

the currently loaded grid. The second instance where this tooltip is useful is when you are

loading local rather than live data and you have custom file names. Normally if your query

is, say, Customers.sql, the corresponding local version of the data would be

Customers.csv. But let’s say you want to compare two slightly different versions of the

same query without saving the query itself under two different names. Execute one version

of the query against a live data source, then save the grid to Customers-old.csv. Modify the

query and execute again, then save the grid to Customers-new.csv. Now switch to local

mode, mirror the settings on the other editor pane, then load one CSV file on each side (by

depressing Alt when you click Refresh). This tooltip will indicate the names of the respective

CSV file—that saves you from having to remember which one you loaded on which side.

 TIP: Of course, you probably will not know that you need to look at record

1643 but if you have 2000 records and you know you want to look about

three-quarters of the way down, you can enter 1500.

SqlDiffFramework User Guide Working with the Editor Pane

April 30, 2010 Page 119

Note that mouse actions (clicking a cell) and keyboard navigation movements ((↑ , ↓ ,

Page Up, Page Down, Control+Home, Control+End, Enter, Tab) also update this current record

number. Difference navigation movements, however, do not affect the current record

number as they do not change the active cell. Difference navigation movements are

reflected on the difference position indicator (section 4.1.2.1) of the results toolbar (section

4.1.2).

4.3.2.2 Current DB Server

This label identifies the database server associated with the current connection selection

immediately adjacent (see 4.3.2.3). Specifically it is the value of the Server field in the

connection editor (Figure 3-16).

 TIP: Hover over this label to reveal the name of the user associated with the

current connection.

Click this label to reveal all the details of the current connection except for

the password.

Oracle Example:
-- Data Source=DevServer01;Unicode=True; User ID=test1

SQL Server Example:
-- Data Source=DevSqlServerA;Initial Catalog=AdventureWorks; User ID=test1

ODBC Example:
-- Dsn=MyOdbcConnection

-- (C:\Store\Version1\Test CSV files)

Notice that for an ODBC connection it not only reveals the connection string but digs

further and indicates the file or path inside that ODBC connection. (This is something even

the ODBC Administrator utility is reluctant to share: if your path is more than 20 characters or

so—which most paths are—it does not show the full path!)

4.3.2.3 Connection Selector

Select any of your defined connections with this drop-down. A connection is a set of details

to connect to a database. In order to have any choices available you need to use the

connection editor, which you can open in two ways: either click the connection selector

while holding down the Shift key, or use the Query  Edit Connections... menu item (see

4.1.7.4). The connection editor lets you define connections to any number of SQL Server,

Oracle, or MySql databases as well as ODBC data sources. You can either manually enter

connections or import a previously defined set that you have saved. The connection editor

provides a combination test button and status indicator that lets you immediately test a

connection you are defining. It also has Save and Load buttons for exporting and importing

respectively. See: section 3.9.

Working with the Editor Pane SqlDiffFramework User Guide

Page 120 April 30, 2010

If you do not include passwords when you create connections in the connection editor,

SqlDiffFramework prompts you for a password when you select a connection that requires

one. It does not validate the password at that time; it validates the password only when you

attempt to execute a query against the database. If you have entered the wrong password

the status bar lets you know. You can correct the password in one of two ways; either go

into the connection editor and enter a password, or click the connection selector while you

depress the Shift key. SqlDiffFramework will then prompt you for a password. See 3.9.1 for

more details on passwords.

4.3.2.4 New query

This button () is overloaded with three related functions, one on the main button itself

and two on the attached dropdown.

(1) Main button

Pressing the main button unloads the current query file and empties the query editor,

leaving you a blank slate.

(2) Dropdown selection: New file but retain buffer

To unload the current query file but keep its contents in the query editor, open the

dropdown and select this choice.

(3) Dropdown selection: Generate new query from results

Unload the current query file and then auto-generate a query from the current result set

with this choice from the dropdown. The query will not match any row filtering predicates

you might have in mind. Rather, it is a quick way to enumerate all the fields in the current

result set. Once supplied, prune the list to just those fields you are interested in.

Type a minimal query to grab all the fields from one or more tables using the asterisk (*)

wildcard:

SELECT * FROM some_table

Execute that query then depress Shift as you click the New Query button (). The

application will prompt you to save the temporary query; just click No unless you want to

save it for something. SqlDiffFramework then converts the temporary query into a query

enumerating all the fields in the current result set, putting them in both a SELECT clause and

an ORDER BY clause. You need only supply the data source in between. Figure 4-15 illustrates

the steps. (Also see section 4.5.1.11 if you just want to copy some or all of the field names

from the grid.)

Having the ORDER BY clause is particularly useful if you are reading data in local mode from

a snapshot (CSV) file. Snapshot files are loaded as is. That is, they ignore the contents of the

SqlDiffFramework User Guide Working with the Editor Pane

April 30, 2010 Page 121

query editor. Unless, that is, you turn on Turbo mode to do internal sorting in which case

the ORDER BY clause is used. See section 3.5.2 for more.

Figure 4-15 Auto-Query Generation

Generate an enumerated field list for your data in a couple easy steps: Execute a query to select all

fields with the asterisk (*) shortcut as shown on the left. Invoke New Query  Generate new query from

results to transform the query into an enumerated list of the fields in the result set; you just need to

supply the data source in the FROM clause.

4.3.2.5 Save query

This button () saves the query to the current file name or, if none, prompts you with a

standard save dialog, allowing you to navigate to the appropriate directory and enter a file

name. SqlDiffFramework remembers the directory so the next time you do the same

operation the file dialog is already in the correct directory (assuming you keep your

collection of SQL files in a single directory). The file picker (see 4.3.1.7) uses the same

location.

The button is disabled unless you have made changes to the currently loaded file.

 TIP: To save the query to a new file name or directory, depress Alt as you

click the button.

 Hover over the button to see the current directory for queries.

Working with the Editor Pane SqlDiffFramework User Guide

Page 122 April 30, 2010

Alternatives: Control+F8 for the left editor pane and Control+F9 for the left editor pane.

4.3.2.6 Save grid results

This button () saves the current result set to a CSV file, a snapshot that you can use later

for comparing data from the same source over time. CSV files saved by SqlDiffFramework

carry extra information in the headers to allow the application to convert the data to actual

data types (integers, dates, etc.) rather than treat all data as strings. If you load CSV files

generated by any other means all columns in the result grid are just strings. Note that you

could also export the data directly into Excel if you just want to manipulate it rather than

save a snapshot for later (see 4.5.1.5).

See also: CSV import/export.

4.3.2.7 Execution time

This indicator displays the time of the last query execution in minutes and seconds.

Hover over the indicator to obtain further resolution of the execution time (down to

milliseconds) along with the file name and when the query was executed.

4.3.2.8 Revert to saved query

This button () discards any changes you have made in the query editor, effectively

reloading the last saved contents. If you are working in an unnamed buffer (i.e. you have

neither loaded a file into the buffer nor saved the buffer to a file) the buffer reverts to

empty. Once you do this, or when you load a fresh file, the button is disabled since it has

nothing to do.

SqlDiffFramework User Guide Working with the Query Editor

April 30, 2010 Page 123

4.4 Working with the Query Editor

While you could use your favorite database-specific utility to design your queries (e.g. SQL

Server Management Studio, Query Analyzer, Oracle's SQL Developer, SQLyog, etc.),

SqlDiffFramework includes a smart and flexible editor in its own right. Indeed, its

powerful syntax-highlighting capabilities include some features that the above commercial

tools do not have. Furthermore, the built-in editor distinguishes between different SQL

dialects for SQL Server, Oracle, and MySql. It maintains a separate lexicon for each dialect

so it highlights the keywords specific. Out of the box the highlighting styles between

dialects are all the same but it is easy to customize to, for example, highlight keywords in

blue for SQL Server and green for Oracle if you wish. (See: Syntax Highlighting

Customization).

Figure 4-16 Query Editor

This figure illustrates the different types of highlighting available (keywords, comments, variables,

strings, numbers, and place holders) as well as keyword completion.

4.4.1 Key Features

4.4.1.1 Dialect-specific syntax highlighting

As shown in Figure 4-16, the query editor recognizes six different elements to highlight:

keywords, strings, comments, variables, numbers, and macro place holders. Though some

of these are not dialect-specific, these elements are defined separately for each dialect (SQL

Working with the Query Editor SqlDiffFramework User Guide

Page 124 April 30, 2010

Server, Oracle, and MySql) allowing for customization if desired. You might, for example,

want to stylize imperative keywords differently from function names or constant names.

See section 3.11.5 for details on customization.

4.4.1.2 Recognizes SQL Server, Oracle, and MySql dialects out-of-the-box

The query editor supports three common SQL dialects: SQL Server, Oracle, and MySql, as

well as a generic SQL context usable for ODBC data sources. Each SQL dialect has its own

context file, detailing how to stylize each of the six elements from 4.4.1.1.

4.4.1.3 Enable or disable automatic highlighting

CM: Highlighting  Auto-highlight (see Figure 4-17, pane 2)

Disabling automatic highlighting suspends further highlighting as you type; it performs

exactly the same function as the editor pane's Auto-highlight button ()—see 4.3.1.1.

Whether the existing text retains its highlighting or reverts to plain black text depends on

the hide/display highlighting setting (see 4.4.1.4). Manual highlighting (see 4.4.1.5) may be

used instead of automatic highlighting.

Alternatives: Auto-highlight on/off button on the top control bar (see 4.3.1.1).

4.4.1.4 Hide or display highlighting

CM: Highlighting  Hide highlight when disabled (see Figure 4-17, pane 2)

When you disable highlighting (see 4.4.1.2) you may elect to retain what has already been

highlighted, or you can revert to plain black text. Even if you hide the highlighting

everything will be highlighted again if you later re-enable automatic highlighting.

4.4.1.5 Automatic or on-demand highlighting

Shortcut: Control+Shift+H

If automatic highlighting is disabled (see 4.4.1.2), you may manually highlight at any time

using this shortcut.

4.4.1.6 Distinguishes between end-of-line comments and block comments

Since standard SQL includes two forms of comments the editor highlights them differently,

letting you easily distinguish between the two. As shown in Figure 4-16, end-of-line

comments are emboldened while block comments are not. See also: section 4.4.2.3.

4.4.1.7 Multiple delimiters assignable for strings and variables

Strings are recognized as any characters delimited by either ' (apostrophe) or " (double-

quotation mark). Both are, by default, stylized the same but you may customize them to

stylize differently. Similarly, T-SQL recognizes two types of parameters, user parameters

SqlDiffFramework User Guide Working with the Query Editor

April 30, 2010 Page 125

(beginning with @) and system parameters (beginning with @ @). These may be stylized

separately as well if desired. . See also: section 4.4.2.2 and 4.4.2.4.

4.4.1.8 Instant conversion of keywords to uppercase or to lowercase

CM: Highlighting  Keywords (see Figure 4-17, pane 3)

By default, keywords that you type are stylized but the case of the words is unaltered—if

you type in lowercase it remains in lowercase. But from the context menu you may set all

keywords to be uppercase or lowercase. So even if you are typing in lowercase as soon as

the editor recognizes a keyword it converts it to uppercase. See section 3.11.3 for subtle

points to keep in mind.

4.4.1.9 Instant conversion of variables to uppercase or to lowercase

CM: Highlighting  Variables (see Figure 4-17, pane 3)

By default, variables that you type are stylized but the case of the words is unaltered—if

you type in lowercase it remains in lowercase. But from the context menu you may set all

variables to be uppercase or lowercase. So even if you are typing in lowercase as soon as

the editor recognizes a variable it converts it to uppercase.

4.4.1.10 Differentiate groups of keywords

Imperative keywords, function names, and constants are stylized differently because they

are in separate groups in the context definition for each SQL dialect. See also: section

4.4.2.1.

4.4.1.11 Make keyword recognition case sensitive or insensitive

CM: Highlighting  Case Sensitive (see Figure 4-17, pane 2)

When enabled, the keywords you type must match the case exactly as the keyword is

defined in the current context. When disabled, upper or lower case is ignored.

4.4.1.12 Enable or disable keyword completion

CM: Highlighting  Keyword Completion  Keyword Completion (see

Figure 4-17, pane 4)

Keyword completion saves you typing: instantly see a list of all words beginning with the

current prefix you have typed and insert it in the editor.

4.4.1.13 Invoke keyword completion

Shortcut: Control+Space

When you invoke keyword completion the editor looks at the text before your cursor and

displays a list of all words or phrases beginning with the prefix you typed. (If the cursor is

Working with the Query Editor SqlDiffFramework User Guide

Page 126 April 30, 2010

adjacent to a space, then all available words and phrases will be included.) You select a

word or phrase from the list with keyboard arrows then press either Space or Enter.

Alternatively, use the mouse to scroll then click. Either way, the list closes and the item you

selected replaces the prefix you typed in the editor.

4.4.1.14 Instant case conversion of auto-completed phrases

CM: Highlighting  Keyword Completion (see Figure 4-17, pane 4)

By default, auto-completed phrases are inserted in the case defined by the context for the

particular SQL dialect. That is, if the context defines SELECT in uppercase, it will be inserted

in uppercase regardless of whether you used the prefix SEL or sel or even Sel. You may

modify this behavior to insert auto-completed phrases in uppercase or in lowercase, or

have the case match the case of your entered prefix (Match user case on the context menu).

See 3.11.3 for subtle points to keep in mind.

4.4.1.15 Macros speed your typing

Shortcut: Control+Space

Each SQL dialect (SQL Server, Oracle, and MySql) comes with several general purpose

macros. Macros may be either anonymous macros, where the macro phrase itself appears in

the auto-completion list, or named macros, where just the name of the macro appears in the

auto-completion list. Either way a macro may consist of a single word or multiple words on

a single line or on multiple lines. Long one-line macros or any multiple-line macros should

generally be named macros in order to keep the auto-completion list clean and compact.

See 3.11.4 for more on defining, editing, and using macros.

4.4.1.16 Macros may be static or dynamic

Shortcut: Control+Space

Macros may either contain static, literal text or they may contain text mixed with place

holders to mark where you should insert actual values. Place holders are stylized uniquely

for easy identification. See 3.11.4 for more on using macros.

4.4.1.17 Navigate among place holders in a macro

Shortcut: F4

Once you insert a macro with place holders (see 4.4.1.16), use the F4 shortcut to advance to

each place holder in turn. When you land on a place holder in this fashion it is

automatically selected so that you need only start typing to replace it. Advancing through

place holders goes only in one direction through your text, but if you miss one, keep going:

when you reach the last one the next F4 takes you back to the first one. See 3.11.4 for more

on using macros.

SqlDiffFramework User Guide Working with the Query Editor

April 30, 2010 Page 127

4.4.1.18 Clean up unneeded place holders

Shortcut: Control+Shift+Delete

Some macros include optional components, so you may not need every element every time

you use it. The SELECT-FULL macro is a good example. This is a template for a simple select

statement, including where, group by, having, and order by clauses, each with a place

holder. Say you do not need the having clause. Advance through the place holders using F4

(see 4.4.1.17); when you reach the line with the having clause, just press Control+Shift+Delete

to remove the entire line. This shortcut deletes not just the selected phrase but the entire

line which contains it. Therefore, good macro design dictates separable elements should be

on separate lines. See 3.11.4 for more on using macros.

4.4.1.19 Delete range by line boundaries

Shortcut: Control+Shift+Delete

This shortcut is actually not tied specifically to place holders (4.4.1.18). You may, in fact,

use it to delete complete lines touched by the current selection irrespective of the presence

of a place holder. If nothing is selected, it deletes the current line containing the cursor.

4.4.1.20 Comment or uncomment a region

Shortcut: Control+Shift+C [comment] and Control+Shift+U [uncomment]

Use Control+Shift+C to quickly comment a range of lines in the editor. An end-of-line

comment token plus a single space are appended to the beginning of each line that your

current selection touches. If you have just an insertion point rather than a text selection, just

the single line containing the insertion point is commented.

Use Control+Shift+U to uncomment a range of lines in the editor. Only lines within your

selected text that begin with an end-of-line comment token will be affected (though you

may have leading whitespace on the line as well). The comment token and a single

following whitespace character (tab or space), if any, are removed from each such line. Any

whitespace before the comment tokens is unaffected. See 4.4.2.3 for more information on

comments.

4.4.1.21 Increase or decrease the font size

Shortcut: Control+> [increase] and Control+< [decrease]

Increase or decrease the font size of the current selection. When auto-highlighting is

enabled, this works only if all text is selected. With auto-highlighting disabled, it works on

any selection.

4.4.1.22 Increase or decrease the indent of a region

Shortcut: Alt+ > [increase] and Alt+ < [decrease]

Working with the Query Editor SqlDiffFramework User Guide

Page 128 April 30, 2010

Use Alt+ > to shift the current selection to the right by adding a tab (or spaces depending on

the ExpandTab setting) to the start of each line. If ExpandTab is enabled, the number

of spaces used is determined by the TabSize setting.

Use Alt+ < to shift the current selection to the left by removing a tab (or spaces depending

on the ExpandTab setting) at the start of each line. See 4.4.1.23 for more on the

ExpandTab setting.

4.4.1.23 Customize the tab key to insert tab characters or spaces

CM: Tab Control  Expand Tab (see Figure 4-17, pane 5)

Working in conjunction with the Tab Inserts Characters setting, Expand Tab is

another mode toggle relevant to editing in the query editor. When turned on and you insert

a tab character in the query editor (via either Tab or Control+Tab depending on the Tab

Inserts Characters setting), this setting determines whether that actually inserts a tab

character or an equivalent number of spaces. The number of spaces is determined by the

setting (2, 4, or 8) in the same context menu.

4.4.1.24 Customize the tab key to act within the editor or not

CM: Tab Control  Tab Inserts Characters (see Figure 4-17, pane 5)

Standard behavior of Windows applications is that the Tab key advances focus from one

field to the next—the classic example of this is a form where you are filling out name,

address, etc. You type something in one text field then press Tab to advance to the next text

field, etc. That works fine for single-line text boxes as well as buttons, check boxes, and

other elements. The model becomes slightly muddled though when you get to a multiple-

line text container such as this query editor or the result grid. In the editor, should the Tab

key still advance to the next element on the screen (perhaps a button) or should it insert 8

spaces in your text? In the result grid, should it advance out of the grid to the next element

or should it advance to the next cell within the grid? Both scenarios describe standard

behaviors depending on your situation so this setting allows you to decide for yourself

which way to operate. When enabled, the Tab key acts within the editor or the result grid,

inserting characters or moving among cells; when this setting is disabled, the Tab key

advances to the next element. Note that whichever way you set it, you may temporarily

toggle it to the opposite setting by depressing the Control key in conjunction with the Tab

key. Another way to say this is that Tab and Control+Tab always do opposite actions: if Tab

acts within the element, then Control+Tab advances to the next element and vice versa.

SqlDiffFramework User Guide Working with the Query Editor

April 30, 2010 Page 129

4.4.1.25 Set the number of spaces inserted by the Tab key

CM: Tab Control  n Spaces (see Figure 4-17, pane 5)

If Expand Tab is enabled, then when you press the Tab key it inserts a fixed number of

spaces determined by this setting rather than a tab character.

4.4.1.26 Search by text, wildcard, or regular expression

Shortcut: Control+F [search] and Control+H [replace]

SqlDiffFramework provides a standard search-and-replace mechanism for editing

convenience. Beyond just a basic text search, though, you have the flexibility to alternately

search by wildcards or by regular expressions.

See 3.4.1 for more on the search-and-replace facility.

Working with the Query Editor SqlDiffFramework User Guide

Page 130 April 30, 2010

Figure 4-17 Query Editor Context Menus

Menus are expanded in the five panes shown to display all available settings.

SqlDiffFramework User Guide Working with the Query Editor

April 30, 2010 Page 131

4.4.2 Types of Highlighting

The following categories of elements may be stylized by specifying a font or a color, or

italicizing, or emboldening. Each supported dialect (SQL Server, Oracle, MySql) has a

separate specification for each of these, though by design the default specifications mirror

each other. You may, however, customize any of them individually. (See: Syntax

Highlighting Customization 3.11.5).

4.4.2.1 Keywords

These are reserved words of the language, including imperatives (select, join), function

names (min, max, len), operators (and, or), constants (null), etc. These groups of keywords

each have their own rendering styles. Imperatives are blue and function names are

magenta, for example. Keyword highlighting is adjustable via the Highlighting 

Keyword submenu of the context menu.

Default: none

4.4.2.2 Variables

A variable (or parameter) name consists of a sigil and its immediately adjacent word (e.g.

@param or @@sys_info in T-SQL). Variable highlighting is adjustable via the Highlighting

 Variable submenu of the context menu. SQL Server recognizes @ and @@ while Oracle

and MySql recognize just @.

Default: @

4.4.2.3 Comments

Comments come in two varieties, block comments (those delimited with both a starting and

an ending token), and end-of-line comments (those with a starting token and an implicit

ending token of the end of the same line).

Default: /* and */ for block comments, -- (double-hyphen) for end-of-line comments.

4.4.2.4 Strings

A string is any sequence of characters bracketed on either end by the same delimiter.

Default: " (double-quotation mark)

4.4.2.5 Numbers

A number is any contiguous sequence of digits.

Default: not applicable

Working with the Query Editor SqlDiffFramework User Guide

Page 132 April 30, 2010

4.4.2.6 Place holders

A place holder occurs only when you invoke a macro expansion at runtime. Any word

(letters, digits, or underscores) bracketed by the place holder tokens will be highlighted as

specified in the context. You may then sequence through them with the F4 key. Examples:

{field1} or _{table name}_.

Default: _{ and }_

SqlDiffFramework User Guide Working with the Results Grid

April 30, 2010 Page 133

4.5 Working with the Results Grid

The results grid displays the result set from the query you execute or, in local mode, from

the stored data snapshot. Figure 4-18 shows sample data loaded from a query of the

AdventureWorks database. The grid has a context menu that may be opened by right-

clicking on any part of the grid header; the following sections describe the commands on

the context menu. The grid also provides a powerful filtering mechanism that allows you to

post-process the data you receive from your database. When you invoke the data filter

(either by context menu or by shortcut), it opens as a one-line panel at the bottom of the

grid with an input box, an Apply button (), and an Erase button (), as shown in the

figure.

Figure 4-18 Results Grid

The results grid has context menus and a filter capability. The two-level context menu is partly

dynamic, listing the current fields for showing or suppressing. The on-demand filter panel accepts

simple SQL expressions for filtering the data to reduce the number of rows locally (i.e. without a

round-trip to the database).

Working with the Results Grid SqlDiffFramework User Guide

Page 134 April 30, 2010

4.5.1 Key Features

4.5.1.1 Filtering data

Shortcut: Control+ ‘ (apostrophe)

CM: Filter

A useful feature of the result grid is that you can modify the result set after you get it from

your database. Upon opening the filter panel type in a SQL expression then press the

Apply button (). For the data shown in Figure 4-18 you could, for example use

(AddressId < 29000) or (City like 'East%'). See section 3.4.3 for more details.

4.5.1.2 Reveal data type of a column

Shortcut: Control+Shift and Control+Alt then hover over column header

When a results grid is active (i.e. keyboard actions are going to the results grid rather than,

say, the query editor) then pressing either of these key combinations and hovering your

mouse over a column header reveals the data type of that column. See Figure 4-19 for an

illustration.

Figure 4-19 Revealing Column Information

The top fragment shows the grid in its normal state. When you

press Control+Shift or Control+Alt column numbers are added;

these are references for hiding or sorting columns from the

keyboard. With those keys depressed, hovering over a particular

column also reveals the data type of that column.

SqlDiffFramework User Guide Working with the Results Grid

April 30, 2010 Page 135

4.5.1.3 Adjusting column widths to fit data or headers

Shortcut: Alt+ =

CM: Fit to Header Width

When you load a result set all columns start out at a standard 100 pixel width. This toggle

lets you use two more useful configurations:

 When enabled: column widths snap to the size of the header cell text.

 When disabled: columns shrink or expand to be just wide enough to accommodate

the longest datum they contain.

Figure 4-20 demonstrates the difference. Note that since text fields may contain very long

strings and screen width is quite limited by comparison, any column may grow to at most

200 pixels wide.

Figure 4-20 Adjusting Column Widths

Use the two fitting commands to toggle the data to fit the header widths or fit the

largest data width.

Working with the Results Grid SqlDiffFramework User Guide

Page 136 April 30, 2010

4.5.1.4 Increase or decrease row heights

Shortcut: Control+ ↑ and Control+ ↓

These two shortcuts allow you to increase or decrease grid row heights to either make the

data easier to read or to pack in more on the screen.

4.5.1.5 Export to Excel

CM: Export to Excel

The controls on the editor pane provide a button to save the result grid to a CSV file,

typically for later reloading of the data (see 4.3.2.6). This menu item provides another

option, allowing you to export the data directly into Excel. Note that the Export to Excel

menu item will only appear on your context menu if the application can detect that it is

installed. I have found that even with a single configuration (Windows XP and Excel 2003)

the installations may still vary, because on one system I have the Excel export option and

on another I do not.

4.5.1.6 Change the format of all displayed date/time values

CM: Date format

Date/time values are typically stored in a database with quite precise values, often down to

microseconds. When you display a date/time value, however, usually a resolution of

seconds is sufficient. Sometimes minutes or even days will do. So you may select any of the

available data formats shown in Figure 4-18 and your choice applies to all date/time values

in all columns. Note that this does not just change the cosmetic appearance of the value; it

also affects the value used for comparison between this results grid and its partner. Say, for

example, the two result sets you are comparing have a date/time column where the values,

for some reason, may sometimes differ by a fraction of a second. If your date/time values

include seconds (as in 4/15/2009 1:48:52 PM) then you will inevitably have some values that

end up differing by one second. Use the context menu to change the format to resolve to

minutes (4/15/2009 1:48 PM) in order to significantly reduce the noise in the data.

4.5.1.7 Reveal column numbers

Shortcut: Control+Shift or Control+Alt

When a results grid is active (i.e. keyboard actions are going to the results grid rather than,

say, the query editor) then pressing either of these key combinations alters the column

headings to include column numbers. When you release the keys the numbers disappear.

This is not a terribly exciting feature by itself but this feature allows you to instantly hide

(see 0) or to sort (see 4.5.1.9) columns from the keyboard. See Figure 4-19 for an illustration.

SqlDiffFramework User Guide Working with the Results Grid

April 30, 2010 Page 137

4.5.1.8 Show or hide columns

Shortcut: Control+Alt+1 through Control+Alt+9

CM: field name

The lower half of the top-level context menu in Figure

4-18 enumerates up to the first nine columns in the

results grid along with an associated shortcut key

combination. Either the context menu item or the key

combination will toggle the visibility of the specified

column. Initially all columns are displayed, indicated

by the check marks in the context menu. When you

select an item it toggles the state, removing the check

mark and hiding the column. The particular number

assigned to the column (e.g. since the context menu

shows Control+Alt+1 for AddressID, that indicates its

column number is 1) is the same number you will see

when you reveal the column numbers (see 4.5.1.7).

Note that hiding a column does not affect assigned

column numbers. So if you have hidden column 2 and

then reveal column numbers you will still see

AddressID with a 1 and PostalCode with a 3. So to re-

display column 2 your choices are the same: either use

the context menu or press Control+Alt+2.

Figure 4-21 illustrates that shortcut keys are assigned

only to the first nine fields, using keys Control +Alt+1 through Control +Alt+9. Any additional

fields may still be shown or hidden but only from the context menu.

4.5.1.9 Sort a column from the keyboard

Shortcut: Control+Shift+1 through Control+Shift+9

Mouse: click a column header

The standard technique in .NET applications for sorting a grid by a particular column is to

click the header of the column with your mouse. The results grid provides a convenience

feature letting you also do this from the keyboard for up to the first 9 columns. The

particular number assigned to each column is the same number you will see when you

reveal the column numbers (see 4.5.1.7).

If Auto-Differencing is enabled (see 4.1.1.9) the two result sets will immediately be re-

analyzed.

Figure 4-21 Column Shortcuts

Fields beyond 9 are accessible

only through the context menu.

Working with the Results Grid SqlDiffFramework User Guide

Page 138 April 30, 2010

4.5.1.10 Quick Find

Shortcut: Control+ /

You can move around the results grid from the keyboard by typing a prefix of a cell value

from the primary sort column. Invoke Quick Find then start typing a prefix; as you enter

each character the display immediately jumps to the first cell matching that value. See 3.4.2.

4.5.1.11 Copy Field Names

Shortcut: Control+ ;

Select one or more cells in the grid then invoke this command to copy the field names that

the selection touches. This loads the names in a comma-separated string onto the clipboard,

ready for pasting into a query for example. Note that there is also a mechanism to generate

a complete query from the result grid—see section 4.3.2.4.

SqlDiffFramework User Guide Quick Start

April 30, 2010 Page 139

5 Appendices

5.1 Quick Start

5.1.1 Setup

 Define one or more connections in the Connection

Editor (Ctrl + F3) to specify the data source(s) you wish

to use (see 3.9); alternatively, import a pre-defined set of

connections that your company has standardized on.

 If a data source is an ODBC data source, use Window’s

ODBC Data Source Administrator (see 3.7 and 5.5)

first; entries there will populate the Data Source

dropdown here in the Connection Editor.

5.1.2 Main Window

 Select your target connections with the Connection Selector dropdown (main window).

 For maximum effect from minimum effort, enable tandem mode (3.8), auto-diff mode

(4.1.1.9), auto-execute mode (4.3.1.3), and auto-highlight mode (4.3.1.1).

 If you will be mixing database types (e.g. SQL Server and Oracle), strongly consider

enabling turbo-sort mode (but note that every query run under turbo-sort mode will

need a little extra diligence to always provide an ORDER BY clause and all fields will need

to be properly aliased—see 3.5.5).

 If you want to retrieve data snapshots, enable local mode (4.3.1.2); otherwise leave it off.

 Write (or load) a query in each editor pane, then execute (F5).

Quick Start SqlDiffFramework User Guide

Page 140 April 30, 2010

SqlDiffFramework User Guide Limitations and Work To Be Done

April 30, 2010 Page 141

5.2 Limitations and Work To Be Done

5.2.1 False Positives from One Engine

The Tauberer difference engine is prone to false positives on complex result sets (see

4.1.1.9). SqlDiffFramework still displays the false positive results but when you navigate

among them they will automatically be skipped over. Using a different engine, of course, is

another workaround.

5.2.2 Multi-Threaded Implementation

SqlDiffFramework does a lot of things well, but I have not made it properly multi-

threaded. Once you start a long-running operation it locks up the user interface with all the

horrid consequences of that act, though it does display a progress meter. The only (meager)

workaround at present is that before starting a major operation open up a new workspace

(from the file menu). Each workspace is a separate process so you may continue to work in

the new instance without interference.

5.2.3 Not Instrumented for Internationalization

There are as yet no provisions for non-English users to adapt to local languages.

5.2.4 Binary Field Types not Supported

This is a limitation of the .NET framework: it assumes that binary columns are always

images, so non-image data appears as the canonical broken link:

Microsoft affirms that this behavior is by design! See this defect report on Microsoft

Connect:

http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=93639

My locally filed defect report is available here:

https://sourceforge.net/tracker/?func=detail&aid=2912137&group_id=101363&atid=629536

5.2.5 Data Must Fit in Memory

SqlDiffFramework operates with everything in memory. It can handle sizable data sets but

you will probably need to close most of your other applications when doing so. Also, be

sure to install for the large address space (see 2.1.2) on WindowsXP, allowing you to use

3GB instead of the standard 2GB for a single application. To eke out just a bit more, switch

http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=93639
https://sourceforge.net/tracker/?func=detail&aid=2912137&group_id=101363&atid=629536

Limitations and Work To Be Done SqlDiffFramework User Guide

Page 142 April 30, 2010

from 32-bit Windows to a 64-bit version. On a 32-bit Windows, 1GB of the total 4GB

potential is always used for the kernel. On a 64-bit OS with more memory (e.g. 8GB), you

get a full 4GB space devoted to a single application.

5.2.6 More Settings Should be Persistent

Many of the user settings you make, explicitly or implicitly or persisted across invocations.

But many others are not and should be.

SqlDiffFramework User Guide Master Function Reference

April 30, 2010 Page 143

5.3 Master Function Reference

This table lists every operation, keystroke, menu item, and on-screen control in

SqlDiffFramework, organized by groups of related functions.

A mark in the Tandem column indicates that whenever you perform that action in one of

the two editor panes, the same action will automatically occur in its partner when Tandem

mode is enabled. Any such tandem-aware operation may be overridden by depressing

Control before you perform the action to temporarily make the action apply to a single editor

pane.

The notation CM in the Menus column is an abbreviation for Context Menu.

Items beginning with > are operations performed in a sub-context (i.e. inside the Meta-

Query Selector or inside the Connection Editor).

Item Tan-

dem
Keys Menus On screen

Difference Navigation

Go to first difference Alt + Home View → First difference

Go to last difference Alt + End View → Last difference

Go to previous difference Alt + ↑ View → Previous
difference

Go to next difference Alt + ↓ View → Next difference

Go to current difference Alt + Enter View → Current
difference

Set current difference to cursor Alt + . View →
Set current difference

Modify next/previous movements to
go specifically to added rows.

Modify next/previous movements to
go specifically to missing rows.

Modify next/previous movements to
go specifically to changed rows.

View total number of lines present
on the left that are absent from the
right

Master Function Reference SqlDiffFramework User Guide

Page 144 April 30, 2010

Item Tan-
dem

Keys Menus On screen

View total number of lines present
on the right that are absent from
the left

View total number of lines present
on both sides that differ from each
other

View total number of difference
chunks

View current difference chunk
number

Display number of lines in current
difference chunk

 [Hover] +

View overall match quality as a
percentage

Display total number of different
lines as compared to total number
of lines

 [Hover] +

Result Set Navigation

Go to first record

Go to previous record

Go to next record

Go to last record

Set current record to cursor Click a cell or row

View current record number

View total number of records

Set current record to any record
number

 Type row number:

Load & Save Files

Open query file from file dialog ● Alt + O File → Open query

Open query file from history ●

Save current file Ctrl + F8 /

Ctrl + F9

File →
Save Left/Right Query

Save file to new name or directory Alt +

Display last used SQL directory [Hover] +

Save result set to new name

SqlDiffFramework User Guide Master Function Reference

April 30, 2010 Page 145

Item Tan-
dem

Keys Menus On screen

New, unnamed file with empty
query

● Alt + W File → New query

New, unnamed file keeping current
query

● →
retain buffer

New, unnamed file with query
derived from result set

● →
generate new query

Restore query to last saved version

Mirror query from current pane to
partner

 Query → Mirror query…

Load & Execute Results

Refresh result set ● F5 Query → Execute Query

Refresh local result set from a
different CSV directory

● Alt + F5 Alt +

Display last used CSV directory [Hover] +

Display last query execution
duration (resolved to seconds)

Display last execution time, duration
(to milliseconds), and file name

 [Hover] +

Operating Modes

Toggle linked editor panes —

Toggle auto-execute ●

Toggle turbo-sort —

Toggle auto-differencing or change
difference engine

—

Toggle local/live mode ●

Toggle auto-highlight ● CM → Highlighting
→ Auto-highlight

Toggle case-sensitive auto-
highlighting

● CM → Highlighting
→ Case sensitive

Toggle highlighting when auto-
highlighting is disabled

● CM → Highlighting
→ Hide highlight
 when disabled

Set keywords forced to upper/lower
case

● CM → Highlighting
→ Keywords
→ default/upper/lower

Master Function Reference SqlDiffFramework User Guide

Page 146 April 30, 2010

Item Tan-
dem

Keys Menus On screen

Set variables forced to upper/lower
case

● CM → Highlighting
→ Variables
→ default/upper/lower

Toggle auto-completion ● CM → Keyword
 completion
→ Enable keyword
 completion

Set auto-completion forced to
upper/lower/user case

● CM → Keyword
completion
→ default / upper /
lower / user case

View

Maximize left pane Ctrl + 1 View → Expand left pane Drag splitter bar right

Maximize right pane Ctrl + 2 View → Expand right
pane

Drag splitter bar left

Equalize both panes Ctrl + 3 View → Show both
panes

Drag splitter bar to
middle

Maximize window across multiple
horizontal monitors

Working in Query Editor

Comment / Uncomment selection Ctrl+Shift+C /

Ctrl+Shift+U

Shift select left / right Alt + < /

Alt + >

Increase / decrease font size (with
auto-highlighting off)

 Ctrl + > /

Ctrl + <

Find Ctrl + F Edit → Find…

Find again F3

Replace Ctrl + H Edit → Replace…

Undo / Redo Ctrl + Z /

Ctrl + Y

Complete current word or macro Ctrl + Space

Select next place holder in macro F4

Reapply highlighting Ctrl + Shift + H

SqlDiffFramework User Guide Master Function Reference

April 30, 2010 Page 147

Item Tan-
dem

Keys Menus On screen

Toggle insert / overwrite mode Insert

Delete next / previous character Delete / Bksp

Delete next / previous word Ctrl + Delete /

Ctrl + Bksp

Delete range by line boundaries Ctrl+Shift+Delete

Swap Tab and Control+Tab actions ● CM → Tab control
→ Tab inserts
 characters

Toggle Tab inserting spaces / tabs ● CM → Tab control
→ Expand tab

Set number of spaces (when Tab
inserts spaces rather than tabs)

● CM → Tab control
→ 2 / 4 / 8

Display language context details Ctrl + F10

Working in Result Set

Open filter sub-panel ● Ctrl + ‘ CM → Filter

> Apply filter predicate ●

> Remove filter predicate ●

> Close filter sub-panel

Open search sub-panel Ctrl + / CM → Search

> Close search sub-panel

Adjust row height larger / smaller ● Alt +] /

Alt + [

Toggle column widths between
fitting headers and fitting data

● Alt + = CM → Fit to header
width

Set date format ● CM → Date Format
→ default / et al…

Export to Excel (only present if Excel
recognized)

 CM → Export to Excel

Copy names of selected fields Ctrl + ;

Sort by column number (first 9
columns)

 Ctrl+Shift+digit

Display / hide individual columns Ctrl + Alt + digit CM → field name

Master Function Reference SqlDiffFramework User Guide

Page 148 April 30, 2010

Item Tan-
dem

Keys Menus On screen

Display column data type Ctrl+Alt+hover or

Ctrl+Shift+hover

Scroll vertically ● Vertical scroll bar

Scroll horizontally ● Horizontal scroll bar

Connections

Select a connection

Open connections editor Ctrl + F3 Query
→ Edit connections…

Alt +

Clear non-persistent
usernames/passwords

 Shift +

Show username in tooltip [Hover] +

Insert connection string in editor as
a comment

 [Click] +

> Test a connection

> Insert new connection Type new name

> Delete current connection

> Load connection set from file Load

> Load connection set with
passwords

 Ctrl + Load

> Save connection set to file Save

> Save connection set with
passwords

 Ctrl + Save

Meta-Queries

Open meta-query dialog Ctrl + F2 Query → Meta-queries

> Navigate up/down in query tree ↑ / ↓

> Expand/collapse category folders → / ← /

> Expand/collapse all query folders Expand All /

Collapse All

> Execute meta-query silently Enter Execute

> Execute meta-query, inserting
into editor, suppressing unused
inputs

 Shift + Enter Shift + Execute

SqlDiffFramework User Guide Master Function Reference

April 30, 2010 Page 149

Item Tan-
dem

Keys Menus On screen

> Execute meta-query, inserting
into editor, revealing all inputs

 Alt + Shift +

Enter

 Alt + Shift + Execute

Batch Execution

Open batch execution palette Query → Execute batch…

> Toggle save snapshots Alt + S

> Toggle check for good vs. bad
data

 Alt + Z

> Toggle including orphans Alt + O

> Begin execution Alt + E Execute

> Cancel execution after current
query

 Cancel

> Close batch execution palette Close or Esc

> Close batch execution palette and
results form

 Shift + Close

> Open results form Alt + R Show Results

Miscellaneous

New workspace Ctrl + N File → New workspace

Toggle memory used between %
and MB

 /

Display progress monitor View →
Show progress monitor

Restore last saved settings Edit → Restore settings…
→ Last Saved

Restore factory settings Edit → Restore settings…
→ Factory Settings

Exit Alt + F4 File → Exit

Master Function Reference SqlDiffFramework User Guide

Page 150 April 30, 2010

SqlDiffFramework User Guide On-Screen Reference Sheets

April 30, 2010 Page 151

5.4 On-Screen Reference Sheets

These are available under the Help menu.

5.4.1 Main Application Reference

On-Screen Reference Sheets SqlDiffFramework User Guide

Page 152 April 30, 2010

5.4.2 Editor Pane Reference

SqlDiffFramework User Guide On-Screen Reference Sheets

April 30, 2010 Page 153

5.4.3 Query Editor Reference

On-Screen Reference Sheets SqlDiffFramework User Guide

Page 154 April 30, 2010

5.4.4 Results Grid Reference

SqlDiffFramework User Guide Preparing an ODBC Connection

April 30, 2010 Page 155

5.5 Preparing an ODBC Connection

Open the ODBC Data Source Administrator. On Vista, this is called Data Sources (ODBC) and

located under the Administrative Tools submenu of the Start menu.

Figure 5-1 walks through configuring and testing an existing connection called testDB (1). If

you need to create a new one, select Add instead of Configure at (2) when you are on the

User DSN tab. When creating a new data source, you will have one extra step before getting

to (3) in the figure: you will be prompted to select the driver. You will find entries for a

variety of data sources, including Excel files (Microsoft Excel Driver (*.xls)), text files (

Microsoft Text Driver (*.txt; *.csv)), and databases (SQL Server). Select an appropriate

one and click the misleadingly-named Finish.

You arrive at (3) then with a defined data source. Here you specify the name and other

details. For an Excel data source you may select a specific workbook. For a SQL Server

database, you select the database server. Point (4) in the figure is the next dialog if you

chose SQL Server as the driver type. Here you specify Windows or SQL Server

authentication. In (5) you may specify the default database for this connection, and finally

in (6) you may test the connection.

Figure 5-1 Defining an ODBC Connection

Preparing an ODBC Connection SqlDiffFramework User Guide

Page 156 April 30, 2010

SqlDiffFramework User Guide Programming with SqlDiffFramework Components

April 30, 2010 Page 157

5.6 Programming with SqlDiffFramework Components

If you are a developer and are interested in leveraging components of the

SqlDiffFramework application, most bits of functionality are already packaged in

standalone libraries on my open source web site CleanCode, complete with API

documentation.

5.6.1 Key URLs

Item URL

Home page http://cleancode.sourceforge.net/

Software highlights http://cleancode.sourceforge.net/wwwdoc/software.html

Download page http://cleancode.sourceforge.net/wwwdoc/download.html

Design notes http://cleancode.sourceforge.net/wwwdoc/colophon.html

.NET API http://cleancode.sourceforge.net/api/csharp/index.html

Table 5-1 Key URLs for SqlDiffFramework Reference

http://cleancode.sourceforge.net/
http://cleancode.sourceforge.net/wwwdoc/software.html
http://cleancode.sourceforge.net/wwwdoc/download.html
http://cleancode.sourceforge.net/wwwdoc/colophon.html
http://cleancode.sourceforge.net/api/csharp/index.html

Programming with SqlDiffFramework Components SqlDiffFramework User Guide

Page 158 April 30, 2010

5.6.2 Libraries

The libraries listed here contain substantial portions of the SqlDiffFramework functionality.

The first few (shaded in the table) are my own, fully custom libraries. The remaining ones

are work that I have leveraged. Details of these are on the main download page on my web

site (http://cleancode.sourceforge.net/wwwdoc/download.html).

Library Description

CleanCode CleanCode core classes

CleanCode.CsvProcessing Import/export for CSV data

CleanCode.ChameleonRichTextBoxControls RichTextBox enhancements for applying

SQL contexts, macro support, and more

CleanCode.DatabaseControls Meta-Query Selector and Connection Editor

components

CleanCode.DataGridViewControls DataGridView enhancements

CleanCode.SqlEditorControls SqlEditor pane

Diff Tauberer differencing engine

HertelDifferenceEngine Hertel differencing engine

PotterDifferenceEngine Potter differencing engine

LumenWorks.Framework.IO CSV import/export

DPAPI Password encryption

LinqBridge LINQ for .NET 2.0

MySql.Data MySql connections

OptionsLib Option form support

VDialog Advanced dialog box formatting

SyntaxHilightingTextBox RichTextBox enhancements for syntax

highlighting and keyword completion

Searchable Controls RichTextBox enhancements for search and

replace

Table 5-2 Libraries Used in SqlDiffFramework

The shaded ones are custom libraries from CleanCode. The remaining ones are freely available

libraries, used either unchanged or with custom enhancements.

http://cleancode.sourceforge.net/wwwdoc/download.html

SqlDiffFramework User Guide Programming with SqlDiffFramework Components

April 30, 2010 Page 159

Figure 5-2 shows the dependency graph of the utilized libraries. I have omitted the

LinqBridge library because it is almost used universally; also, if you use .NET 3.5 rather

than .NET 2.0 to compile, it is not required.

Figure 5-2 Library Dependencies

The dependency graph here was automatically generated using the .NET Refractor tool.

Programming with SqlDiffFramework Components SqlDiffFramework User Guide

Page 160 April 30, 2010

5.6.3 Component Descriptions

The following sections provide a brief description (and illustration where appropriate) of

the major components from my open source libraries that are used as building blocks in

SqlDiffFramework. Further details on each of these, including in-depth articles on some of

them, are available on the main software page on my web site

(http://cleancode.sourceforge.net/wwwdoc/software.html).

5.6.3.1 SqlEditor

This control is a true SQL-editor-

in-a-box. Drag it onto your

Windows Form and you have a

fully functioning editor that may

be configured at runtime to

connect to any number of

different servers and database

types (it supports SQL Server,

Oracle, and any ODBC data

source). Once you define a set of

connections in the connection

editor, you may export the list

and then import it into another

copy of the application running

on other machines.

The SqlEditor control has built-

in support for synchronizing its

actions with a partner. That is,

instantiate two copies of this

control and they can scroll

together, load files together, and

change settings together, once

you enable tandem operation

(just what SqlDiffFramework

needs!). The user may override

the tandem mode setting (either

on or off) for a single action

simply by depressing the Control

key when performing an action.

http://cleancode.sourceforge.net/wwwdoc/software.html

SqlDiffFramework User Guide Programming with SqlDiffFramework Components

April 30, 2010 Page 161

5.6.3.2 Query Picker

Presents a library of meta-query

templates in a tree, then

dynamically generates an input

form based on the place holders

in that template. Once the user

supplies values for the inputs,

the control builds a finished

meta-query from the template.

Templates are included for SQL

Server, Oracle, and MySql.

5.6.3.3 ExtendedDataGridView

An ExtendedDataGridView, as

the name suggests, extends a

standard DataGridView with

useful functionality that

includes:

 Quick-Find

 Quick-Filter

 Hide/show columns

 Adjust column widths

 Adjust row heights

 Adjust date formatting

 Reveal column data type

 Export result set

Programming with SqlDiffFramework Components SqlDiffFramework User Guide

Page 162 April 30, 2010

5.6.3.4 ChameleonRichTextBox

A ChameleonRichTextBox enhances a

RichTextBox with language-specific

syntax highlighting, keyword

completion (a modest Intellisense),

search-and-replace capability, macro

support, plus some additional

keyboard formatting controls.

A complete feature list is available on

this comparison chart (URL should be

all on one line):

http://cleancode.sourceforge.net/article

/SyntaxHighlight improvements.html

5.6.3.5 MultiConnectionStringManager

The MultiConnectionStringManager

control provides a way to easily

manage not just one connection string

but a set of connection strings,

allowing one-click switching between

databases whether they be on the

same server, on different servers, or

even dissimilar systems (e.g. SQL

Server vs. Oracle.) The control

supports connections to SQL Server,

Oracle, and MySql, as well as ODBC

data sources. It allows you to test the

connection immediately, as well as to

save or load sets of connections so

you can easily migrate a set to other

machines.

SqlDiffFramework User Guide Programming with SqlDiffFramework Components

April 30, 2010 Page 163

5.6.3.6 StructuredTraceSource

The several diagnostic classes

(StructuredTraceSource and its

associated

AlignedTextWriterTraceListener)

integrate into and extend the .NET

diagnostic system. These are quite

useful in following the execution

flow of your instrumented

application, providing a flexible

mechanism for tracing and

debugging.

5.6.3.7 FileMaskControl

Filters a directory using one or

more file masks, displaying both

the list of matching files and a

count of matched files. You may

customize this generic control with

additional arbitrary criteria such

as: restricting to files modified

after a certain date, ignoring

locked files, etc.

Programming with SqlDiffFramework Components SqlDiffFramework User Guide

Page 164 April 30, 2010

5.6.3.8 DisplayCommandsForm

Use this sub-form to display

available user commands for a

control or application (a quick

reference list). Buttons are

displayed as images, keys are

shown as icons, and tooltips may

also be used for further details.

You can see several of these in

SqlDiffFramework's Help menu.

Each is implemented in the user

control to which it pertains. Thus,

for example, anywhere you embed

a ChameleonRichTextBox you can

display its quick reference.

5.6.3.9 ShadowTipForm

Use this sub-form to display more

of a freeform text passage

(compared to the

DisplayCommandForm) to guide

the user. It partially obscures the

underlying form with an opaque

island of text floating on a semi-

transparent layer covering the

parent form. By pressing Control,

you can even move the opaque

panel out of the way to see the

underlying form.

5.6.3.10 ResourceMgr

CleanCode.IO

.ResourceMgr

The ResourceMgr class provides a powerful mechanism for your

application to purge and refresh external file resources embedded

in your binaries. Often an application includes files other than just

the executable and associated DLLs, perhaps an XML file, text files,

languages files, etc. One approach to file management is to package

these files with an installer for your application. A second

SqlDiffFramework User Guide Programming with SqlDiffFramework Components

April 30, 2010 Page 165

approach, taken here, is to include these files as resources

packaged within your executable or DLL, which are then

unpackaged not by an installer but at runtime by the application

itself and only if needed.

5.6.3.11 UsageTracker

CleanCode.IO

.UsageTracker

For custom applications used in-house, the UsageTracker class

provides a mechanism for recording first use of each version of

your application by each user. This provides a convenient history

for managing updates and releases.

5.6.3.12 UpdateCheck

CleanCode.IO

.UpdateCheck

The UpdateCheck class provides a mechanism for notifying in-

house users when new versions of your application become

available.

5.6.3.13 WindowRestorer

CleanCode.Forms

.WindowRestorer

Used in conjunction with application settings this helper class

tracks a form's window state and position and enables an

application to restore it upon subsequent invocations. It accounts

for whether the window is minimized or maximized at the time

the application is terminated. Most importantly, it accounts for

multiple monitors and changes in monitors. You can also use this

class to add a maximize-across-multiple-monitors function and to

automatically position sub-forms on the same monitor before

displaying them.

5.6.3.14 MemoryGauge

CleanCode.Forms

.MemoryGauge

Provides a convenient mechanism for displaying the amount of

memory used by the current application on either a ToolStripItem

or a Control as an absolute number in megabytes or a relative

percentage of memory.

5.6.3.15 MenuBuilder

CleanCode.Forms

.MenuBuilder

This class simplifies the process of building—and using—a multi-

level context menu in a Windows Form application.

Programming with SqlDiffFramework Components SqlDiffFramework User Guide

Page 166 April 30, 2010

5.6.3.16 ToolStripDropDownManager

CleanCode.Forms.

ToolStripDropDownManager

This class enhances a plain status label in a ToolStrip to

support history, include a time stamp, include a category,

and differentiate errors and warnings.

	Introduction
	Feature List

	Getting Started
	Installation
	Privacy Considerations
	Component Options

	Enterprise Configuration
	Provide Common Connections for Your Enterprise
	Provide Update Notification within Your Enterprise
	Track Users within Your Enterprise

	Using SqlDiffFramework
	Analyzing Differences
	Analyzing Additions and Deletions
	Including and Excluding Columns
	Create the Basic Query
	Match Columns by Aliasing
	Skip Columns With Matching Names

	Searching and Filtering
	Searching the Query Editor
	Searching the Results Grid
	Filtering the Results Grid

	Sorting and Turbo-sorting
	Re-sorting Case Sensitive Results for Consistency
	Re-sorting Static Snapshots
	Re-sorting for NULL Consistency
	Simple Sorting
	Turbo-sorting

	Working With Queries and Snapshots
	Organizing Your Files
	Exporting to Excel
	Saving Snapshots
	Retrieving Snapshots

	Working With ODBC Data Sources
	CSV Data Sources
	Excel Data Sources
	ODBC Example: Compare Two Excel Files

	Working in Tandem: Do Two Things At Once
	Tandem Operations
	Load file
	New file
	Execute query
	Toggle local / live mode
	Enable auto-execute
	Filter result set
	Scroll result set
	Adjust grid row height
	Adjust grid column widths
	Enable auto-highlight
	Enable case-sensitive syntax highlighting
	Enable forcing keywords to upper or lower case
	Enable auto-completion
	Enable forcing auto-completed phrases to upper/lower/user case
	Enable expanding tabs to spaces
	Set number of spaces for tab expansion
	Toggle tab and Control+tab actions

	Working with Connections
	Passwords
	Session and Persistent Passwords
	Ephemeral Passwords
	Determining When a Password is Required

	Working with Meta-Queries
	Using Meta-Queries
	Invoking a Meta-Query
	Manipulating a Meta-Query
	The Meta-Query Library

	Meta-Query Templates
	Template Structure
	Template Storage in the Library File
	Customizing Meta-Queries

	Meta-Query Usage Summary

	Syntax Highlighting & Keyword Completion
	Syntax Highlighting
	Recognition
	Stylization and Case Adjustment

	Keyword Completion
	Recognition
	Stylization and Case Adjustment

	Highlighting and Keyword Completion Interactions
	Macros
	Anonymous Macros vs. Named Macros
	Macro Templates

	Customizing Syntax Highlighting and Macros
	Context File Structure
	Controlling Whitespace in Macros
	Highlighting Styles

	Automating Data Analysis

	Understanding SqlDiffFramework Components
	Working with the Application
	SqlDiffFramework Control ToolBar
	Next Difference
	Previous Difference
	First Difference
	Current Difference
	Last Difference
	Set Current Difference
	Toggle Turbo Sort Mode
	Toggle Tandem Mode
	Toggle Auto-Differencing Mode
	Show Progress Monitor

	SqlDiffFramework Result ToolBar
	Difference Position Indicator
	Match Quality (%)
	Count of Added Rows
	Count of Missing Rows
	Count of Changed Rows
	Difference Navigation Shortcuts

	SqlDiffFramework Status Bar
	Status DropDown
	Memory Indicator
	Legend

	File Menu
	New workspace
	New Query
	Open Query
	Save LEFT query, Save RIGHT query
	Exit

	Edit Menu
	Find…
	Replace…
	Restore Settings…
	Options…

	View Menu
	Next difference
	Previous difference
	First difference
	Current difference
	Last difference
	Set current difference
	Show progress monitor
	Expand left pane
	Expand right pane
	Show both panes

	Query Menu
	Execute query
	Execute Batch
	Meta-queries…
	Edit Connections…
	Mirror Query…

	Help Menu
	Show Main Key Reference
	Show Editor Pane Key Reference
	Show Input Key Reference
	Show Output Key Reference
	About SqlDiffFramework

	Multiple Monitor Support
	Resolution and Orientation Impacts
	Maximization Nuances

	Persistent Settings
	Application-Scoped Global Values
	UpdateCatalogFile
	UpdateRepository

	Global States
	WindowState
	WindowPosition
	UpdateChecked
	NewVersion
	UnreachableRepository
	TandemButton_Checked
	TurboSortButton_Checked
	AutoDiffButton_Checked

	Editor Pane Shared States
	UseLocalDataButton_Checked
	AutoHighlightButton_Checked
	AutoExecuteButton_Checked

	Editor Pane Distinct States
	LeftSqlDirectory
	RightSqlDirectory
	LeftCsvDirectory
	RightCsvDirectory
	LeftConnectionName
	RightConnectionName

	Database Connections
	ConnectionList

	Program Options
	UpdateCheckInterval
	MaxColumnWidth
	CommandTimeout
	MaxHighlightedRowsPerChunk
	MaxHighlightedRowsTotal
	ShowElapsedTimes

	Working with the Editor Pane
	Top Control Bar Elements
	Auto-highlight on/off
	Local/live mode
	Auto-execute on query load
	Execute or refresh
	Meta-query dialog
	Current file
	File picker

	Bottom Control Bar Elements
	Grid navigation
	Current DB Server
	Connection Selector
	New query
	Save query
	Save grid results
	Execution time
	Revert to saved query

	Working with the Query Editor
	Key Features
	Dialect-specific syntax highlighting
	Recognizes SQL Server, Oracle, and MySql dialects out-of-the-box
	Enable or disable automatic highlighting
	Hide or display highlighting
	Automatic or on-demand highlighting
	Distinguishes between end-of-line comments and block comments
	Multiple delimiters assignable for strings and variables
	Instant conversion of keywords to uppercase or to lowercase
	Instant conversion of variables to uppercase or to lowercase
	Differentiate groups of keywords
	Make keyword recognition case sensitive or insensitive
	Enable or disable keyword completion
	Invoke keyword completion
	Instant case conversion of auto-completed phrases
	Macros speed your typing
	Macros may be static or dynamic
	Navigate among place holders in a macro
	Clean up unneeded place holders
	Delete range by line boundaries
	Comment or uncomment a region
	Increase or decrease the font size
	Increase or decrease the indent of a region
	Customize the tab key to insert tab characters or spaces
	Customize the tab key to act within the editor or not
	Set the number of spaces inserted by the Tab key
	Search by text, wildcard, or regular expression

	Types of Highlighting
	Keywords
	Variables
	Comments
	Strings
	Numbers
	Place holders

	Working with the Results Grid
	Key Features
	Filtering data
	Reveal data type of a column
	Adjusting column widths to fit data or headers
	Increase or decrease row heights
	Export to Excel
	Change the format of all displayed date/time values
	Reveal column numbers
	Show or hide columns
	Sort a column from the keyboard
	Quick Find
	Copy Field Names

	Appendices
	Quick Start
	Setup
	Main Window

	Limitations and Work To Be Done
	False Positives from One Engine
	Multi-Threaded Implementation
	Not Instrumented for Internationalization
	Binary Field Types not Supported
	Data Must Fit in Memory
	More Settings Should be Persistent

	Master Function Reference
	On-Screen Reference Sheets
	Main Application Reference
	Editor Pane Reference
	Query Editor Reference
	Results Grid Reference

	Preparing an ODBC Connection
	Programming with SqlDiffFramework Components
	Key URLs
	Libraries
	Component Descriptions
	SqlEditor
	Query Picker
	ExtendedDataGridView
	ChameleonRichTextBox
	MultiConnectionStringManager
	StructuredTraceSource
	FileMaskControl
	DisplayCommandsForm
	ShadowTipForm
	ResourceMgr
	UsageTracker
	UpdateCheck
	WindowRestorer
	MemoryGauge
	MenuBuilder
	ToolStripDropDownManager

