-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprezentacia.tex
432 lines (383 loc) · 9.49 KB
/
prezentacia.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
\documentclass{beamer}
\mode<presentation>
{
\usetheme{Berkeley}
\usecolortheme{dolphin}
\setbeamercovered{transparent}
}
\usepackage[utf8]{inputenc}
\usepackage[slovak]{babel}
\usepackage{ae} % vektorove fonty so spravnou diakritikou nad t,l,d...
\usepackage{times}
\usepackage{verbatim} % pre moznost viacriadkovych komentarov
\title{Interaction of compressible fluid\\ and moving bodies}
\author{Miroslav Šimko}
\institute{Charles University in Prague\\Faculty of Mathematics and Physics}
\date{2007}
\begin{document}
\input{mycommands.tex}
\frame{\titlepage}
\frame{\tableofcontents}
\section{Governing Equations}
\begin{comment}
\frame
{
\frametitle{Equation of motion}
$$\dv T+b=\rho[v'+(\grad v)v] \vm$$
\begin{itemize}
\item $T$ \tu{Cauchy stress}
\item $b$ volume forces
\item $\rho$ density in motion
\item $v$ velocity
\end{itemize}
}
\frame
{
\frametitle{Compressible Newtonian fluid}
$$T = -\pi I + C[L] \vm$$
$$C[L]=2\mu D + \lambda (\tr L)I \vm$$
\begin{itemize}
\item $\mu, \lambda$ \tu{viscosity coefficients} of the fluid
\item $D$ symmetric part of velocity gradient $L$
\end{itemize}
}
\end{comment}
\frame
{
\frametitle{Governing equations}
\begin{itemize}
\item \tu{Navier-Stokes} equations
$$\rho[v'+(\grad v)v]=\mu\Delta v+(\lambda+\mu)\,\grad \dv v -\grad \pi + b$$
\pause
\item Continuity equation
$$\rho'+\dv(\rho v)=0 \vm$$
\pause
\item Barotropic flow
$$\pi=\widehat\pi(\rho) \vm$$
\end{itemize}
}
\section{Formulation of the problem}
\frame
{
\frametitle{Model of Airfoil}
\img{profile.png}
\begin{itemize}
\item $\alpha$ airfoil deflection angle
\item $h$ vertical displacement
\end{itemize}
}
\subsection{Problem setting}
\frame
{
\frametitle{Problem setting}
\img{problem-setting.png}
\begin{itemize}
\item $\Gamma_I$ inlet
\item $\Gamma_O$ outlet
\item $\Gamma_W$ virtual flow wall
\item $\Gamma_{W_t}$ airfoil
\end{itemize}
}
\subsection{Mathematical formulation}
\frame
{
\frametitle{Mathematical formulation}
\begin{itemize}
\item ALE formulation
\item Weak formulation
\item Formulation of discrete problem
\end{itemize}
}
\frame
{
\frametitle{ALE formulation}
\begin{itemize}
\item ALE mapping
\[
\begin{split}
&\mathcal A_t:\Omega_0\rightarrow\Omega_t\\
&X\mapsto y=y(X,t)=\mathcal A_t(X)
\end{split}
\]
\pause
\item Domain velocity
$$w(y,t)=\ddt \mathcal A_t(X)|_{X=\mathcal A_t^{-1}(y)}$$
\pause
\item ALE derivative
$$\DADt f(y,t) = \ddt f(\mathcal A_t(X),t)|_{X=\mathcal A_t^{-1}(y)}$$
\end{itemize}
}
\frame
{
\frametitle{ALE formulation}
\begin{itemize}
\item Navier-Stokes equations
\[
\begin{split}
\rho[\DADt v+(&\grad v)(v-w)] = \\
\mu\Delta v&+(\lambda+\mu)\,\grad \dv v -\grad \pi + b
\end{split}
\]
\item Continuity equation
$$\DADt \rho+\rho\,\dv(v)+\grad\rho \cdot (v-w) = 0$$
\end{itemize}
}
\frame
{
\frametitle{Weak formulation}
\begin{itemize}
\item Test functions for density
$$q\in Q\!=\!L^2(\Omega_t)$$
\pause
\item Test functions for velocity
$$u\in V\!=\!\{u \in H^1(\Omega_t)^2 : u|_{\Gamma_D}=0\}, \,\mbox{where}$$
$$\Gamma_D=\Gamma_I \cup \Gamma_W \cup \Gamma_{W_t}$$
\end{itemize}
}
\frame
{
\frametitle{Denotation of forms}
\[
\begin{split}
a(v,u) &= \mu\,(\grad v,\grad u) + (\lambda+\mu)(\dv v,\dv u) \\
b(u,q) &= (\dv u,q) \\
\alpha(v,\rho,q) &= (v \cdot \grad \rho,q) \\
d(\rho,w,v,u) &= (\rho(\grad v)w,u) \\
e(\rho,v,q) &= (\rho\,\dv v,q) \\
\end{split}
\]
}
\frame
{
\frametitle{Weak formulation}
\begin{itemize}
\item Navier-Stokes equations
\[
\begin{split}
(\rho\; \DADt &v,u) + d(\rho,v-w,v,u) + a(v,u) \\
&=b(u,\pi) + (b,u) + \int_{\Gamma_O}{\pi_{ref}\,n \cdot u}\dA
\end{split}
\]
\item Continuity equation
$$(\DADt \rho,q) + e(\rho,v,q) + \alpha(v-w,\rho,q) = 0$$
\end{itemize}
}
\frame
{
\frametitle{Boundary conditions}
\begin{itemize}
\item Let $\forall t\in[0,T]$ exists $v^* \in H^1(\Omega_t)^2$ such that
\[
\begin{array}{ll}
v^*(x,t)=v_D(x,t), &x \in \Gamma_I \cup \Gamma_W \\
v^*(x,t)=w(x,t), &x \in \Gamma_{W_t}
\end{array}
\]
\pause
\item find $v$ such that $v - v^* \in V$; $\rho \in Q$ and Navier-Stokes
equations are satisfied $\forall u \in V$
\pause
\item boundary condition for density $\rho$ on $\Gamma_I$
\[
\begin{split}
&(\DADt \rho,q) + e(\rho,v,q) + \alpha(v-w,\rho,q) \\
&- \gamma \int_{\Gamma_I}{\rho v_D \cdot nq}\dA =
- \gamma \int_{\Gamma_I}{\rho_D v_D \cdot nq}\dA \qquad \forall q\in Q
\end{split}
\]
\end{itemize}
}
\frame
{
\frametitle{Discrete problem}
\begin{itemize}
\item Partition of time interval
\item Triangulation of the domain
\item Approximation of ALE derivative
\item Approximation of test functions spaces
\item Numerical scheme
\end{itemize}
}
\frame
{
\frametitle{Partition of time interval}
\begin{itemize}
\item Let $\{\mathcal T_h\}_{h \in (0,T)}$ be a regular system of triangulations of
the domain $\widetilde\Omega:=\bigcup_{t\in[0,T]}\Omega_t\times\{t\}$
\item In a time interval $[0,T]$ we construct a partition $t_n=n\tau,
n=0,\ldots,r$ with time step~$\tau$
\end{itemize}
}
\frame
{
\frametitle{Triangulation of the domain}
\begin{itemize}
\item airfoil is approximated by piecewise linear curve
\item we use polygonal triangulation
\end{itemize}
\img{mesh.png}
}
\frame
{
\frametitle{Approximation of ALE derivative}
\begin{itemize}
\item $y_n=\mathcal A_{t_n}(X),\,y_{n-1}=\mathcal A_{t_{n-1}}(X)$
\item $\tilde f=f\circ\mathcal A_t$
\pause
\[
\begin{split}
\DADt &f(y_n,t_n) = \ddt\tilde{f}(X,t_n) \\
&\approx(\tilde{f}(X,t_n)-\tilde{f}(X,t_{n-1}))/\tau \\
&= (f(y_n,t_n)-f(y_{n-1},t_{n-1}))/\tau
\end{split}
\]
\pause
\item $f^n=f(y_n,t_n)$
\pause
\item $\dadt f^n=\DADt f(y_n,t_n)=(f^n-f^{n-1})/\tau$
\end{itemize}
}
\frame
{
\frametitle{Approximation of test functions spaces}
\begin{itemize}
\item Let $P^p(K)$ be a set of polynomial functions on $K$ with degree $\leq p$.
\pause
\item $X_h^{(p)}=\{v_h\in C(\bar{\Omega}_h);\, v_h|_K \in P^p(K)\;\forall K\in \mathcal T_h \}$
\pause
\item $Q \approx Q_h=X_h^{(m)}$
\pause
\item $X_h=[X_h^{(k)}]^2$
\pause
\item $V \approx V_h=\{v_h \in [X_h^{(k)}]^2;\,v_h|_{\Gamma_D}=0\}$
\end{itemize}
}
\frame
{
\frametitle{Approximation of test functions spaces}
\begin{itemize}
\item $v^n \approx v_h^n \in V_h$
\item $\rho^n \approx \rho_h^n \in Q_h$
\item $\DADt v^n \approx (v_h^n-v_h^{n-1})/\tau = \dadt v_h^n$
\item $\DADt \rho^n \approx (\rho_h^n-\rho_h^{n-1})/\tau = \dadt \rho_h^n$
\pause
\newline
\item $q_h+\delta q_{h\beta} \quad \mbox{pre }
q_{h\beta}=(v_h^{n-1}-w_h^{n-1})\cdot\grad{q_h}$
\end{itemize}
}
\frame
{
\frametitle{Numerical scheme}
\[\begin{split}
(\rho_h^{n-1}\; &\dadt v_h^n,u_h) + d(\rho_h^{n-1},v_h^{n-1}-w_h^{n-1},v_h^n,u_h) + a(v_h^n,u_h) \\
&=b(u_h,\pi_h^{n-1}) + (b_h^{n-1},u_h) + \int_{\Gamma_O}{\pi_{ref}\,u_h \cdot
n}\dA
\end{split}\]
\pause
\[\begin{split}
(\dadt &\rho_h^n,q_h) + e(\rho_h^{n-1},v_h^n,\sdtf) \\
&+\alpha(v_h^{n-1}-w_h^{n-1},\rho_h^n,\sdtf)
- \gamma \int_{\Gamma_I}{\rho_h^n v_D^n \cdot nq_h}\dA \\
&= -\gamma \int_{\Gamma_I}{\rho_D^n v_D^n \cdot nq_h}\dA
\end{split}\]
}
\section{Existence of approximate solution}
\frame
{
\frametitle{Existence of approximate solution}
Assumptions
\begin{itemize}
\item $\Gamma_D=\partial \Omega,\, v=v_D \mbox{ on } \Gamma_D$
\item exists $v_h^{n-1}$,\,$\rho_h^{n-1} \ge \rho_0 > 0$
\item $K_{n-1} = \max \{ \n v_h^{n-1}\n_\infty,\n
v_h^{n-1}-w_h^{n-1}\n_\infty,\n\rho_h^{n-1}\n_\infty \}$
\item $\tau \le \frac{\mu\rho_0}{2K_{n-1}^4}, \quad \frac{3}{2}\tau \le
\delta \le \frac{\mu}{4\,N\,K_{n-1}^2}$
\end{itemize}
Statement
\begin{itemize}
\item There exists a solution $v_h^n$,\,$\rho_h^n$ on time level $t_n$ \\
and it is unique.
\end{itemize}
}
\section{Used SW}
\frame
{
\frametitle{Triangulation of domain}
\begin{itemize}
\item ANGENER
\end{itemize}
\img{mesh-adapt.png}
}
\frame
{
\frametitle{Sparse system solver}
\begin{itemize}
\item Pardiso
\item Umfpack
\end{itemize}
\img{benchmark.png}
}
\section{Numerical experiments}
\frame
{
\frametitle{Numerical experiments}
\begin{itemize}
\item $\mu = 1$
\item $\lambda = -\frac{2}{3}\mu$
\item $\rho_{ref} = 1$
\item $\pi(\rho) = 1$
\item $v_{ref} = (1,0)$
\item $\tau = 0.001$
\item $\delta = \frac{3}{2}\tau$
\item $Re=\frac{\rho_{ref}\,v_{ref}}{\mu} = 1$
\end{itemize}
}
\frame
{
\frametitle{Distribution of density}
\begin{itemize}
\item $\alpha=0, \,t=1$
\end{itemize}
\img{hustota1.png}
}
\frame
{
\frametitle{Distribution of density}
\begin{itemize}
\item $\alpha=\pi/10, \,t=0.4$
\end{itemize}
\img{hustota2.png}
}
\frame
{
\frametitle{Streamlines of motion}
\begin{itemize}
\item $\alpha=\pi/10, \,t=0.4$
\end{itemize}
\img{prudnice2.png}
}
\section{Discussion}
\frame
{
\frametitle{Opened problems}
\begin{itemize}
\item Problem with negative density
\pause
\item Experiments with high Reynolds numbers
\begin{itemize}
\item Using high-order elements
\item Different triangulations for density and velocity
\item Using hp-adaptive methods (like HERMES)
\end{itemize}
\pause
\item Simulation of interaction of fluid with airfoil
\end{itemize}
}
\frame
{
\frametitle{Questions and answers}
\img{qa.png}
}
\end{document}