forked from przemekpastuszka/biometrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrequency.py
123 lines (95 loc) · 3.39 KB
/
frequency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Metody biometryczne
# Przemyslaw Pastuszka
from PIL import Image, ImageDraw
import utils
import argparse
import math
def points_on_line(line, W):
im = Image.new("L", (W, 3 * W), 100)
draw = ImageDraw.Draw(im)
draw.line([(0, line(0) + W), (W, line(W) + W)], fill=10)
im_load = im.load()
points = []
for x in range(0, W):
for y in range(0, 3 * W):
if im_load[x, y] == 10:
points.append((x, y - W))
del draw
del im
dist = lambda (x, y): (x - W / 2) ** 2 + (y - W / 2) ** 2
return sorted(points, cmp = lambda x, y: dist(x) < dist(y))[:W]
def vec_and_step(tang, W):
(begin, end) = utils.get_line_ends(0, 0, W, tang)
(x_vec, y_vec) = (end[0] - begin[0], end[1] - begin[1])
length = math.hypot(x_vec, y_vec)
(x_norm, y_norm) = (x_vec / length, y_vec / length)
step = length / W
return (x_norm, y_norm, step)
def block_frequency(i, j, W, angle, im_load):
tang = math.tan(angle)
ortho_tang = -1 / tang
(x_norm, y_norm, step) = vec_and_step(tang, W)
(x_corner, y_corner) = (0 if x_norm >= 0 else W, 0 if y_norm >= 0 else W)
grey_levels = []
for k in range(0, W):
line = lambda x: (x - x_norm * k * step - x_corner) * ortho_tang + y_norm * k * step + y_corner
points = points_on_line(line, W)
level = 0
for point in points:
level += im_load[point[0] + i * W, point[1] + j * W]
grey_levels.append(level)
treshold = 100
upward = False
last_level = 0
last_bottom = 0
count = 0.0
spaces = len(grey_levels)
for level in grey_levels:
if level < last_bottom:
last_bottom = level
if upward and level < last_level:
upward = False
if last_bottom + treshold < last_level:
count += 1
last_bottom = last_level
if level > last_level:
upward = True
last_level = level
return count / spaces if spaces > 0 else 0
def freq(im, W, angles):
(x, y) = im.size
im_load = im.load()
freqs = [[0] for i in range(0, x, W)]
for i in range(1, x / W - 1):
for j in range(1, y / W - 1):
freq = block_frequency(i, j, W, angles[i][j], im_load)
freqs[i].append(freq)
freqs[i].append(0)
freqs[0] = freqs[-1] = [0 for i in range(0, y / W)]
return freqs
def freq_img(im, W, angles):
(x, y) = im.size
freqs = freq(im, W, angles)
freq_img = im.copy()
for i in range(1, x / W - 1):
for j in range(1, y / W - 1):
box = (i * W, j * W, min(i * W + W, x), min(j * W + W, y))
freq_img.paste(freqs[i][j] * 255.0 * 1.2, box)
return freq_img
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Image frequency")
parser.add_argument("image", nargs=1, help = "Path to image")
parser.add_argument("block_size", nargs=1, help = "Block size")
parser.add_argument('--smooth', "-s", action='store_true', help = "Use Gauss for smoothing")
args = parser.parse_args()
im = Image.open(args.image[0])
im = im.convert("L") # covert to grayscale
im.show()
W = int(args.block_size[0])
f = lambda x, y: 2 * x * y
g = lambda x, y: x ** 2 - y ** 2
angles = utils.calculate_angles(im, W, f, g)
if args.smooth:
angles = utils.smooth_angles(angles)
freq_img = freq_img(im, W, angles)
freq_img.show()