-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathbinary_crossentropy_example.py
194 lines (140 loc) · 5.62 KB
/
binary_crossentropy_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# coding: utf-8
import os
import sys
import math
import random as rn
import cv2
import numpy as np
import pandas as pd
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, Conv2D, Reshape
from keras.layers import concatenate
from keras.layers.normalization import BatchNormalization
from keras.layers.core import Dropout, Activation
from keras.optimizers import Adadelta, Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping
from keras import backend as K
import models
#Parameters
INPUT_CHANNELS = 3
NUMBER_OF_CLASSES = 1
IMAGE_W = 224
IMAGE_H = 224
epochs = 100*1000
patience = 60
batch_size = 8
loss_name = "binary_crossentropy"
def get_model():
inputs = Input((IMAGE_H, IMAGE_W, INPUT_CHANNELS))
base = models.get_fcn_vgg16_32s(inputs, NUMBER_OF_CLASSES)
#base = models.get_fcn_vgg16_16s(inputs, NUMBER_OF_CLASSES)
#base = models.get_fcn_vgg16_8s(inputs, NUMBER_OF_CLASSES)
#base = models.get_unet(inputs, NUMBER_OF_CLASSES)
#base = models.get_segnet_vgg16(inputs, NUMBER_OF_CLASSES)
# sigmoid
reshape= Reshape((-1,NUMBER_OF_CLASSES))(base)
act = Activation('sigmoid')(reshape)
model = Model(inputs=inputs, outputs=act)
model.compile(optimizer=Adadelta(), loss='binary_crossentropy')
#print(model.summary())
#sys.exit()
return model
def gen_random_image():
img = np.zeros((IMAGE_H, IMAGE_W, INPUT_CHANNELS), dtype=np.uint8)
mask = np.zeros((IMAGE_H, IMAGE_W, NUMBER_OF_CLASSES), dtype=np.uint8)
colors = np.random.permutation(256)
# Background
img[:, :, 0] = colors[0]
img[:, :, 1] = colors[1]
img[:, :, 2] = colors[2]
# Object class 1
obj1_color0 = colors[3]
obj1_color1 = colors[4]
obj1_color2 = colors[5]
while(True):
center_x = rn.randint(0, IMAGE_W)
center_y = rn.randint(0, IMAGE_H)
r_x = rn.randint(10, 50)
r_y = rn.randint(10, 50)
if(center_x+r_x < IMAGE_W and center_x-r_x > 0 and center_y+r_y < IMAGE_H and center_y-r_y > 0):
cv2.ellipse(img, (int(center_x), int(center_y)), (int(r_x), int(r_y)), int(0), int(0), int(360), (int(obj1_color0), int(obj1_color1), int(obj1_color2)), int(-1))
cv2.ellipse(mask, (int(center_x), int(center_y)), (int(r_x), int(r_y)), int(0), int(0), int(360), int(255), int(-1))
break
# White noise
density = rn.uniform(0, 0.1)
for i in range(IMAGE_H):
for j in range(IMAGE_W):
if rn.random() < density:
img[i, j, 0] = rn.randint(0, 255)
img[i, j, 1] = rn.randint(0, 255)
img[i, j, 2] = rn.randint(0, 255)
return img, mask
def batch_generator(batch_size):
while True:
image_list = []
mask_list = []
for i in range(batch_size):
img, mask = gen_random_image()
image_list.append(img)
mask_list.append(mask)
image_list = np.array(image_list, dtype=np.float32) #Note: don't scale input, because use batchnorm after input
mask_list = np.array(mask_list, dtype=np.float32)
mask_list /= 255.0 # [0,1]
mask_list= mask_list.reshape(batch_size,IMAGE_H*IMAGE_W,NUMBER_OF_CLASSES)
yield image_list, mask_list
def visualy_inspect_result():
model = get_model()
model.load_weights('model_weights_'+loss_name+'.h5')
img,mask= gen_random_image()
y_pred= model.predict(img[None,...].astype(np.float32))[0]
print('y_pred.shape', y_pred.shape)
y_pred= y_pred.reshape((IMAGE_H,IMAGE_W,NUMBER_OF_CLASSES))
print('np.min(y_pred)', np.min(y_pred))
print('np.max(y_pred)', np.max(y_pred))
cv2.imshow('img',img)
cv2.imshow('mask 1',mask[:,:,0])
cv2.imshow('mask object 1',y_pred[:,:,0])
cv2.waitKey(0)
def save_prediction():
model = get_model()
model.load_weights('model_weights_'+loss_name+'.h5')
img,mask= gen_random_image()
y_pred= model.predict(img[None,...].astype(np.float32))[0]
print('y_pred.shape', y_pred.shape)
y_pred= y_pred.reshape((IMAGE_H,IMAGE_W,NUMBER_OF_CLASSES))
print('np.min(mask[:,:,0])', np.min(mask[:,:,0]))
print('np.max(mask[:,:,0])', np.max(mask[:,:,0]))
print('np.min(y_pred)', np.min(y_pred))
print('np.max(y_pred)', np.max(y_pred))
res = np.zeros((IMAGE_H,4*IMAGE_W,3),np.uint8)
res[:,:IMAGE_W,:] = img
res[:,IMAGE_W:2*IMAGE_W,:] = cv2.cvtColor(mask[:,:,0],cv2.COLOR_GRAY2RGB)
res[:,2*IMAGE_W:3*IMAGE_W,:] = 255*cv2.cvtColor(y_pred[:,:,0],cv2.COLOR_GRAY2RGB)
y_pred[:,:,0][y_pred[:,:,0] > 0.5] = 255
res[:,3*IMAGE_W:4*IMAGE_W,:] = cv2.cvtColor(y_pred[:,:,0],cv2.COLOR_GRAY2RGB)
cv2.imwrite(loss_name+'_result.png', res)
def visualy_inspect_generated_data():
img,mask = gen_random_image()
cv2.imshow('img',img)
cv2.imshow('mask object 1',mask[:,:,0])
cv2.waitKey(0)
def train():
model = get_model()
callbacks = [
EarlyStopping(monitor='val_loss', patience=patience, verbose=0),
ModelCheckpoint('model_weights_'+loss_name+'.h5', monitor='val_loss', save_best_only=True, verbose=0),
]
history = model.fit_generator(
generator=batch_generator(batch_size),
nb_epoch=epochs,
samples_per_epoch=100,
validation_data=batch_generator(batch_size),
nb_val_samples=10,
verbose=1,
shuffle=False,
callbacks=callbacks)
if __name__ == '__main__':
#visualy_inspect_generated_data()
train()
#visualy_inspect_result()
save_prediction()