-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperfReportDiff.py
214 lines (186 loc) · 10.1 KB
/
perfReportDiff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Python script that processes 2N perf profiles and shows the diffs
# The first half of the profiles must belong to one configuration
# and the second hald to another configuration.
# The script cummulates the profiling samples for the two configurations
# in order to avoid fluctuations in the sampling mechanism.
# Then, the two configurations are compared head-to-head.
# The comparison includes information about (1) contributions of various dlls
# and (2) contributions of various symbols in the dlls
# Usage: python3 perfReportDiff.py A1.perf A2.perf ... An.perf B1.perf B2.perf ... Bn.perf
# Author: Marius Pirvu ([email protected])
import operator # for sorting the dictionary
import re # for regular expressions
import sys # for accessing parameters and exit
import shlex, subprocess
def processPerfProfile(perfFileName, globalDictionary):
# Process the profile getting the ticks for various symbols
# Example of text to be parsed
'''
# Overhead Samples Command Shared Object Symbol
# ........ ............ ............... .................. ........................................................................................................................................................
#
0.26% 268 Default Executo libj9vm29.so [.] convertClassNameToStackMapType
0.19% 201 Default Executo libj9vm29.so [.] computeVTable
0.17% 178 Default Executo libj9vm29.so [.] internalCreateRAMClassFromROMClassImpl
0.17% 177 Default Executo [JIT] tid 31473 [.] org/apache/felix/resolver/ResolverImpl.parseUses(Ljava/lang/String;)Ljava/util/List;_cold
'''
cmd = f"perf report --header --stdio -n -i {perfFileName}"
output = subprocess.check_output(shlex.split(cmd), universal_newlines=True)
lines = output.splitlines()
foundHeader = False
for line in lines:
# Search for the header first
if not foundHeader:
pattern = re.compile('^# Overhead\s+Samples\s+Command\s+Shared Object\s+Symbol')
m = pattern.match(line)
if m:
foundHeader = True
continue
else: # Now parse the lines with samples
pattern = re.compile('^\s+(\d+\.\d+)%\s+(\d+)\s+(...............)\s+(..................)\s+\[.\]\s+(.+)')
m = pattern.match(line)
if m:
#print(line)
percentage = float(m.group(1)) # First group is percentage contribution
samples = int(m.group(2))
thrName = (m.group(3)).strip()
dsoName = (m.group(4)).strip()
symbolName = (m.group(5)).strip()
if dsoName.startswith("[JIT]"): # delete the thread ID from the jitted thread
dsoName = dsoName[0:5]
# Add to our dictionary
if dsoName in globalDictionary:
symbolDictionary = globalDictionary[dsoName]
symbolDictionary[symbolName] = symbolDictionary.get(symbolName, 0) + samples
else:
globalDictionary[dsoName] = {symbolName:samples}
if not foundHeader:
print("perf report output from ", cmd, " is not in expected format\n")
sys.exit(-1)
def printLibraryContribution(globalDictionary, dsoName):
print("===========", dsoName, "===================")
symbolDictionary = globalDictionary[dsoName]
# print all symbols ordered by samples
sortedSymbols = sorted(symbolDictionary.items(), key=lambda i: i[1], reverse=True)
for symbol in sortedSymbols:
print(" SYM\t {sampl:6d}\t{sym}".format(sampl=symbol[1], sym=symbol[0]))
def computeSumSamplesInSymbolDictionary(symbolDictionary):
sum = 0
# for every symbol in my dictionary
for symbol in symbolDictionary:
sum += symbolDictionary[symbol]
return sum
# Function used to sort dsos based on total ticks in symbols
# item is tuple where item[0] is the name of the dso and item[1] is a dictionary with symbols and samples
def sortingDsoFunction(item):
return computeSumSamplesInSymbolDictionary(item[1])
def printAllLibrariesContribution(globalDictionary):
# I would like to sort the dsos in order of total samples
sortedDsos = sorted(globalDictionary.items(), key=sortingDsoFunction, reverse=True)
for item in sortedDsos:
dso = item[0]
symbolDictionary = item[1]
sum = computeSumSamplesInSymbolDictionary(symbolDictionary)
print("{dso:20s}\t{sampl:6d}".format(dso=dso, sampl=sum))
for item in sortedDsos:
dso = item[0]
#printLibraryContribution(globalDictionary, dso)
def printDiffPerSymbol(symbolDictionary1, symbolDictionary2):
numPrintedSymbols = 0
totalSamples1 = 0
totalSamples2 = 0
symbolUnion = {}
if symbolDictionary1 is not None:
for symbol in symbolDictionary1:
samples1 = symbolDictionary1[symbol]
totalSamples1 += samples1
symbolUnion[symbol] = {'samples1':samples1, 'samples2':0}
if symbolDictionary2 is not None:
for symbol in symbolDictionary2:
samples2 = symbolDictionary2[symbol]
totalSamples2 += samples2
if symbol in symbolUnion:
sampleMap = symbolUnion[symbol]['samples2'] = samples2
else:
symbolUnion[symbol] = {'samples1':0, 'samples2':samples2}
print("| {s1:6s}\t | {s2:6s} \t | {diff:7s} \t | {percent:6s} \t | {sym:20s} ".format(s1='samples', s2='samples', diff=' diff', percent=' diff %', sym='Symbol'))
print("| {s1:6s}\t | {s2:6s} \t | {diff:7s} \t | {percent:6s} \t | {sym:20s} ".format(s1='-------', s2='-------', diff='-------', percent='-------', sym='------'))
percent = (totalSamples2 - totalSamples1)*100.0/float(totalSamples1) if totalSamples1 != 0 else 0.0
print("| {s1:6d}\t | {s2:6d} \t | {diff:7d} \t | {percent:6.1f}% \t | {symbol:20s} ".
format(s1=totalSamples1, s2=totalSamples2, diff=totalSamples2-totalSamples1, percent=percent, symbol="TOTAL"))
# Sort symbolUnion based on the absolute difference of samples
sortedSymbols = sorted(symbolUnion.items(), key=lambda i: abs(i[1]['samples1']-i[1]['samples2']), reverse=True)
for item in sortedSymbols:
symbol = item[0]
samples1 = item[1]['samples1']
samples2 = item[1]['samples2']
percent = (samples2 - samples1)*100.0/float(samples1) if samples1 != 0 else 0.0
print("| {s1:6d} \t | {s2:6d} \t | {diff:7d} \t | {percent:6.1f}% \t | {sym:20s} ".format(s1=samples1, s2=samples2, diff=samples2-samples1, percent=percent, sym=symbol))
numPrintedSymbols += 1
if numPrintedSymbols > 20: # don't print more than 20 symbols per dso
print("...")
break
def printDiffPerLibrary(globalDictionary1, globalDictionary2):
totalSamples1 = 0
totalSamples2 = 0
unionDsos = {}
for dso in globalDictionary1:
samples1 = computeSumSamplesInSymbolDictionary(globalDictionary1[dso])
totalSamples1 += samples1
unionDsos[dso] = {'samples1':samples1, 'samples2':0}
for dso in globalDictionary2:
samples2 = computeSumSamplesInSymbolDictionary(globalDictionary2[dso])
totalSamples2 += samples2
if dso in unionDsos:
unionDsos[dso]['samples2'] = samples2
else:
unionDsos[dso] = {'samples1':0, 'samples2':samples2}
print("=== Samples grouped per shared library ===")
print("| {s1:6s}\t | {s2:6s} \t | {diff:7s} \t | {percent:6s} \t | {dso:20s} |".format(s1='samples', s2='samples', diff=' diff', percent=' diff %', dso='Shared Library'))
print("| {s1:6s}\t | {s2:6s} \t | {diff:7s} \t | {percent:6s} \t | {dso:20s} |".format(s1='-------', s2='-------', diff='-------', percent='-------', dso='--------------'))
percent = (totalSamples2 - totalSamples1)*100.0/float(totalSamples1) if totalSamples1 != 0 else 0.0
print("| {s1:6d}\t | {s2:6d} \t | {diff:7d} \t | {percent:6.1f}% \t | {symbol:20s} |".
format(s1=totalSamples1, s2=totalSamples2, diff=totalSamples2-totalSamples1, percent=percent, symbol="TOTAL"))
# Sort the dsos based on their absolute difference
sortedDsos = sorted(unionDsos.items(), key=lambda i: abs(i[1]['samples1']-i[1]['samples2']), reverse=True)
for item in sortedDsos:
dso = item[0]
samples1 = item[1]['samples1']
samples2 = item[1]['samples2']
percent = (samples2 - samples1)*100.0/float(samples1) if samples1 != 0 else 0.0
print("| {s1:6d} \t | {s2:6d} \t | {diff:7d} \t | {percent:6.1f}% \t | {dso:20s} |".format(s1=samples1, s2=samples2, diff=samples2-samples1, percent=percent, dso=dso))
print("\n")
# Print the symbol differences
for item in sortedDsos:
dso = item[0]
samples1 = item[1]['samples1']
samples2 = item[1]['samples2']
# Do not print symbols for dsos that use very little CPU compared to the total (less than 1%)
if samples1/float(totalSamples1) >= 0.01 or samples2/float(totalSamples2) >= 0.01:
symbolDictionary1 = globalDictionary1[dso] if dso in globalDictionary1 else None
symbolDictionary2 = globalDictionary2[dso] if dso in globalDictionary2 else None
print("======== ", dso, " ===========")
printDiffPerSymbol(symbolDictionary1, symbolDictionary2)
# Get the name of vlog
if len(sys.argv) < 2:
print ("Program must have 2N arguments: the perf profiles\n")
sys.exit(-1)
numPerfProfiles = len(sys.argv) - 1
if numPerfProfiles % 2 != 0:
print("Number of perf profiles must be even")
sys.exit(-1)
# Process half the profiles
globalDictionary1 = {}
for i in range(numPerfProfiles//2):
perfFileName = str(sys.argv[i+1])
print(perfFileName)
processPerfProfile(perfFileName, globalDictionary1)
# Process the other half
globalDictionary2 = {}
for i in range(numPerfProfiles//2, numPerfProfiles):
perfFileName = str(sys.argv[i+1])
print(perfFileName)
processPerfProfile(perfFileName, globalDictionary2)
#printAllLibrariesContribution(globalDictionary1)
#printAllLibrariesContribution(globalDictionary2)
printDiffPerLibrary(globalDictionary1, globalDictionary2)