
Trace-based Just-in-Time Type Specialization for Dynamic
Languages

Andreas Gal∗+, Brendan Eich∗, Mike Shaver∗, David Anderson∗, David Mandelin∗,
Mohammad R. Haghighat$, Blake Kaplan∗, Graydon Hoare∗, Boris Zbarsky∗, Jason Orendorff∗,

Jesse Ruderman∗, Edwin Smith#, Rick Reitmaier#, Michael Bebenita+, Mason Chang+#, Michael Franz+

Mozilla Corporation∗

{gal,brendan,shaver,danderson,dmandelin,mrbkap,graydon,bz,jorendorff,jruderman}@mozilla.com

Adobe Corporation#

{edwsmith,rreitmai}@adobe.com

Intel Corporation$

{mohammad.r.haghighat}@intel.com

University of California, Irvine+

{mbebenit,changm,franz}@uci.edu

Abstract
Dynamic languages such as JavaScript are more difficult to com-
pile than statically typed ones. Since no concrete type information
is available, traditional compilers need to emit generic code that can
handle all possible type combinations at runtime. We present an al-
ternative compilation technique for dynamically-typed languages
that identifies frequently executed loop traces at run-time and then
generates machine code on the fly that is specialized for the ac-
tual dynamic types occurring on each path through the loop. Our
method provides cheap inter-procedural type specialization, and an
elegant and efficient way of incrementally compiling lazily discov-
ered alternative paths through nested loops. We have implemented
a dynamic compiler for JavaScript based on our technique and we
have measured speedups of 10x and more for certain benchmark
programs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors — Incremental compilers, code generation.

General Terms Design, Experimentation, Measurement, Perfor-
mance.

Keywords JavaScript, just-in-time compilation, trace trees.

1. Introduction
Dynamic languages such as JavaScript, Python, and Ruby, are pop-
ular since they are expressive, accessible to non-experts, and make
deployment as easy as distributing a source file. They are used for
small scripts as well as for complex applications. JavaScript, for
example, is the de facto standard for client-side web programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

and is used for the application logic of browser-based productivity
applications such as Google Mail, Google Docs and Zimbra Col-
laboration Suite. In this domain, in order to provide a fluid user
experience and enable a new generation of applications, virtual ma-
chines must provide a low startup time and high performance.

Compilers for statically typed languages rely on type informa-
tion to generate efficient machine code. In a dynamically typed pro-
gramming language such as JavaScript, the types of expressions
may vary at runtime. This means that the compiler can no longer
easily transform operations into machine instructions that operate
on one specific type. Without exact type information, the compiler
must emit slower generalized machine code that can deal with all
potential type combinations. While compile-time static type infer-
ence might be able to gather type information to generate opti-
mized machine code, traditional static analysis is very expensive
and hence not well suited for the highly interactive environment of
a web browser.

We present a trace-based compilation technique for dynamic
languages that reconciles speed of compilation with excellent per-
formance of the generated machine code. Our system uses a mixed-
mode execution approach: the system starts running JavaScript in a
fast-starting bytecode interpreter. As the program runs, the system
identifies hot (frequently executed) bytecode sequences, records
them, and compiles them to fast native code. We call such a se-
quence of instructions a trace.

Unlike method-based dynamic compilers, our dynamic com-
piler operates at the granularity of individual loops. This design
choice is based on the expectation that programs spend most of
their time in hot loops. Even in dynamically typed languages, we
expect hot loops to be mostly type-stable, meaning that the types of
values are invariant. (12) For example, we would expect loop coun-
ters that start as integers to remain integers for all iterations. When
both of these expectations hold, a trace-based compiler can cover
the program execution with a small number of type-specialized, ef-
ficiently compiled traces.

Each compiled trace covers one path through the program with
one mapping of values to types. When the VM executes a compiled
trace, it cannot guarantee that the same path will be followed
or that the same types will occur in subsequent loop iterations.

H
ence,recording

and
com

piling
a

trace
speculatesthatthe

path
and

typing
w

illbe
exactly

as
they

w
ere

during
recording

forsubsequent
iterations

ofthe
loop.

E
very

com
piled

trace
contains

allthe
guards

(checks)
required

to
validate

the
speculation.

If
one

of
the

guards
fails

(if
control

flow
is

different,
or

a
value

of
a

different
type

is
generated),

the
trace

exits.
If

an
exit

becom
es

hot,
the

V
M

can
record

a
branch

trace
starting

atthe
exitto

coverthe
new

path.In
this

w
ay,the

V
M

records
a

trace
tree

covering
allthe

hotpaths
through

the
loop.

N
ested

loops
can

be
difficult

to
optim

ize
for

tracing
V

M
s.

In
a

naı̈ve
im

plem
entation,

inner
loops

w
ould

becom
e

hot
first,

and
the

V
M

w
ould

start
tracing

there.W
hen

the
inner

loop
exits,the

V
M

w
ould

detectthata
differentbranch

w
as

taken.T
he

V
M

w
ould

try
to

record
a

branch
trace,and

find
thatthe

trace
reaches

notthe
innerloop

header,butthe
outerloop

header.A
tthis

point,the
V

M
could

continue
tracing

untilitreaches
the

inner
loop

header
again,

thus
tracing

the
outer

loop
inside

a
trace

tree
for

the
inner

loop.
B

utthis
requires

tracing
a

copy
ofthe

outerloop
forevery

side
exit

and
type

com
bination

in
the

inner
loop.In

essence,this
is

a
form

of
unintended

tailduplication,w
hich

can
easily

overflow
the

code
cache.A

lternatively,the
V

M
could

sim
ply

stop
tracing,and

give
up

on
evertracing

outerloops.
W

e
solve

the
nested

loop
problem

by
recording

nested
trace

trees.O
ursystem

traces
the

innerloop
exactly

as
the

naı̈ve
version.

T
he

system
stops

extending
the

innertree
w

hen
itreaches

an
outer

loop,butthen
itstarts

a
new

trace
atthe

outer
loop

header.W
hen

the
outerloop

reaches
the

innerloop
header,the

system
tries

to
call

the
trace

tree
forthe

innerloop.Ifthe
callsucceeds,the

V
M

records
the

call
to

the
inner

tree
as

part
of

the
outer

trace
and

finishes
the

outer
trace

as
norm

al.
In

this
w

ay,
our

system
can

trace
any

num
berofloops

nested
to

any
depth

w
ithoutcausing

excessive
tail

duplication.
T

hese
techniques

allow
a

V
M

to
dynam

ically
translate

a
pro-

gram
to

nested,
type-specialized

trace
trees.

B
ecause

traces
can

cross
function

callboundaries,our
techniques

also
achieve

the
ef-

fectsofinlining.B
ecause

traceshave
no

internalcontrol-flow
joins,

they
can

be
optim

ized
in

linear
tim

e
by

a
sim

ple
com

piler
(10).

T
hus,

our
tracing

V
M

efficiently
perform

s
the

sam
e

kind
of

op-
tim

izations
that

w
ould

require
interprocedural

analysis
in

a
static

optim
ization

setting.T
his

m
akes

tracing
an

attractive
and

effective
toolto

type
specialize

even
com

plex
function

call-rich
code.

W
e

im
plem

ented
these

techniques
foran

existing
JavaScriptin-

terpreter,SpiderM
onkey.W

e
callthe

resulting
tracing

V
M

Trace-
M

onkey.TraceM
onkey

supports
allthe

JavaScriptfeatures
of

Spi-
derM

onkey,w
ith

a
2x-20x

speedup
fortraceable

program
s.

T
his

paperm
akes

the
follow

ing
contributions:

•
W

e
explain

an
algorithm

fordynam
ically

form
ing

trace
trees

to
covera

program
,representing

nested
loopsasnested

trace
trees.

•
W

e
explain

how
to

speculatively
generate

efficienttype-specialized
code

fortraces
from

dynam
ic

language
program

s.
•

W
e

validate
ourtracing

techniques
in

an
im

plem
entation

based
on

the
SpiderM

onkey
JavaScriptinterpreter,achieving

2x-20x
speedups

on
m

any
program

s.

T
he

rem
ainderofthis

paperis
organized

as
follow

s.Section
3

is
a

generaloverview
of

trace
tree

based
com

pilation
w

e
use

to
cap-

ture
and

com
pile

frequently
executed

code
regions.

In
Section

4
w

e
describe

our
approach

of
covering

nested
loops

using
a

num
-

ber
of

individual
trace

trees.
In

Section
5

w
e

describe
our

trace-
com

pilation
based

speculative
type

specialization
approach

w
e

use
to

generate
efficientm

achine
code

from
recorded

bytecode
traces.

O
ur

im
plem

entation
of

a
dynam

ic
type-specializing

com
piler

for
JavaScriptis

described
in

Section
6.R

elated
w

ork
is

discussed
in

Section
8.In

Section
7

w
e

evaluate
ourdynam

ic
com

pilerbased
on

1
f
o
r
(
v
a
r
i
=
2
;
i
<
1
0
0
;
+
+
i
)
{

2
i
f
(
!
p
r
i
m
e
s
[
i
]
)

3
c
o
n
t
i
n
u
e
;

4
f
o
r
(
v
a
r
k
=
i
+
i
;
i
<
1
0
0
;
k
+
=
i
)

5
p
r
i
m
e
s
[
k
]
=
f
a
l
s
e
;

6
}

Figure
1.

Sam
ple

program
:

sieve
of

E
ratosthenes.

p
r
i
m
e
s

is
initialized

to
an

array
of

100
f
a
l
s
e

values
on

entry
to

this
code

snippet.

Interpret
Bytecodes

M
onitor

Record
LIR Trace

Execute
Com

piled Trace

Enter
Com

piled Trace

Com
pile

LIR Trace

Leave
Com

piled Trace

loop
edge

hot
loop/exit

abort
recording

finish at
loop header

cold/blacklisted
loop/exit

com
piled trace
ready

loop edge with
sam

e types

side exit to
existing trace

side exit,
no existing trace

O
verhead

Interpreting

Native

Sym
bol Key

Figure
2.

State
m

achine
describing

the
m

ajor
activities

of
Trace-

M
onkey

and
the

conditions
that

cause
transitions

to
a

new
activ-

ity.
In

the
dark

box,
T

M
executes

JS
as

com
piled

traces.
In

the
lightgray

boxes,T
M

executes
JS

in
the

standard
interpreter.W

hite
boxes

are
overhead.T

hus,to
m

axim
ize

perform
ance,w

e
need

to
m

axim
ize

tim
e

spentin
the

darkestbox
and

m
inim

ize
tim

e
spentin

the
w

hite
boxes.T

he
bestcase

is
a

loop
w

here
the

types
atthe

loop
edge

are
the

sam
e

as
the

types
on

entry–then
T

M
can

stay
in

native
code

untilthe
loop

is
done.

a
setof

industry
benchm

arks.T
he

paper
ends

w
ith

conclusions
in

Section
9

and
an

outlook
on

future
w

ork
is

presented
in

Section
10.

2.
O

verview
:E

xam
ple

Tracing
R

un
T

his
section

provides
an

overview
of

our
system

by
describing

how
TraceM

onkey
executes

an
exam

ple
program

.
T

he
exam

ple
program

,show
n

in
Figure

1,com
putes

the
first100

prim
e

num
bers

w
ith

nested
loops.T

he
narrative

should
be

read
along

w
ith

Figure
2,

w
hich

describes
the

activities
TraceM

onkey
perform

s
and

w
hen

it
transitions

betw
een

the
loops.

TraceM
onkey

alw
ays

begins
executing

a
program

in
the

byte-
code

interpreter.
E

very
loop

back
edge

is
a

potential
trace

point.
W

hen
the

interpreter
crosses

a
loop

edge,
TraceM

onkey
invokes

the
trace

m
onitor,w

hich
m

ay
decide

to
record

or
execute

a
native

trace.A
tthe

startofexecution,there
are

no
com

piled
traces

yet,so
the

trace
m

onitorcountsthe
num

beroftim
eseach

loop
back

edge
is

executed
untila

loop
becom

es
hot,currently

after2
crossings.N

ote
thatthe

w
ay

ourloopsare
com

piled,the
loop

edge
iscrossed

before
entering

the
loop,so

the
second

crossing
occurs

im
m

ediately
after

the
firstiteration.
H

ere
is

the
sequence

of
events

broken
dow

n
by

outer
loop

iteration:

v
0
:
=
l
d
s
t
a
t
e
[
7
4
8
]

/
/
l
o
a
d
p
r
i
m
e
s
f
r
o
m
t
h
e
t
r
a
c
e
a
c
t
i
v
a
t
i
o
n
r
e
c
o
r
d

s
t
s
p
[
0
]
,
v
0

/
/
s
t
o
r
e
p
r
i
m
e
s
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

v
1
:
=
l
d
s
t
a
t
e
[
7
6
4
]

/
/
l
o
a
d
k
f
r
o
m
t
h
e
t
r
a
c
e
a
c
t
i
v
a
t
i
o
n
r
e
c
o
r
d

v
2
:
=
i
2
f
(
v
1
)

/
/
c
o
n
v
e
r
t
k
f
r
o
m
i
n
t
t
o
d
o
u
b
l
e

s
t
s
p
[
8
]
,
v
1

/
/
s
t
o
r
e
k
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

s
t
s
p
[
1
6
]
,
0

/
/
s
t
o
r
e
f
a
l
s
e
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

v
3
:
=
l
d
v
0
[
4
]

/
/
l
o
a
d
c
l
a
s
s
w
o
r
d
f
o
r
p
r
i
m
e
s

v
4
:
=
a
n
d
v
3
,
-
4

/
/
m
a
s
k
o
u
t
o
b
j
e
c
t
c
l
a
s
s
t
a
g
f
o
r
p
r
i
m
e
s

v
5
:
=
e
q
v
4
,
A
r
r
a
y

/
/
t
e
s
t
w
h
e
t
h
e
r
p
r
i
m
e
s
i
s
a
n
a
r
r
a
y

x
f
v
5

/
/
s
i
d
e
e
x
i
t
i
f
v
5
i
s
f
a
l
s
e

v
6
:
=
j
s
_
A
r
r
a
y
_
s
e
t
(
v
0
,
v
2
,
f
a
l
s
e
)

/
/
c
a
l
l
f
u
n
c
t
i
o
n
t
o
s
e
t
a
r
r
a
y
e
l
e
m
e
n
t

v
7
:
=
e
q
v
6
,
0

/
/
t
e
s
t
r
e
t
u
r
n
v
a
l
u
e
f
r
o
m
c
a
l
l

x
t
v
7

/
/
s
i
d
e
e
x
i
t
i
f
j
s
_
A
r
r
a
y
_
s
e
t
r
e
t
u
r
n
s
f
a
l
s
e
.

Figure
3.

L
IR

snippet
for

sam
ple

program
.T

his
is

the
L

IR
recorded

for
line

5
of

the
sam

ple
program

in
Figure

1.T
he

L
IR

encodes
the

sem
antics

in
SSA

form
using

tem
porary

variables.T
he

L
IR

also
encodes

all
the

stores
that

the
interpreter

w
ould

do
to

its
data

stack.
Som

etim
es

these
stores

can
be

optim
ized

aw
ay

as
the

stack
locations

are
live

only
on

exits
to

the
interpreter.Finally,the

L
IR

records
guards

and
side

exits
to

verify
the

assum
ptions

m
ade

in
this

recording:that
p
r
i
m
e
s

is
an

array
and

thatthe
callto

setits
elem

entsucceeds.

m
o
v
e
d
x
,
e
b
x
(
7
4
8
)

/
/
l
o
a
d
p
r
i
m
e
s
f
r
o
m
t
h
e
t
r
a
c
e
a
c
t
i
v
a
t
i
o
n
r
e
c
o
r
d

m
o
v
e
d
i
(
0
)
,
e
d
x

/
/
(
*
)
s
t
o
r
e
p
r
i
m
e
s
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

m
o
v
e
s
i
,
e
b
x
(
7
6
4
)

/
/
l
o
a
d
k
f
r
o
m
t
h
e
t
r
a
c
e
a
c
t
i
v
a
t
i
o
n
r
e
c
o
r
d

m
o
v
e
d
i
(
8
)
,
e
s
i

/
/
(
*
)
s
t
o
r
e
k
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

m
o
v
e
d
i
(
1
6
)
,
0

/
/
(
*
)
s
t
o
r
e
f
a
l
s
e
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

m
o
v
e
a
x
,
e
d
x
(
4
)

/
/
(
*
)
l
o
a
d
o
b
j
e
c
t
c
l
a
s
s
w
o
r
d
f
o
r
p
r
i
m
e
s

a
n
d
e
a
x
,
-
4

/
/
(
*
)
m
a
s
k
o
u
t
o
b
j
e
c
t
c
l
a
s
s
t
a
g
f
o
r
p
r
i
m
e
s

c
m
p
e
a
x
,
A
r
r
a
y

/
/
(
*
)
t
e
s
t
w
h
e
t
h
e
r
p
r
i
m
e
s
i
s
a
n
a
r
r
a
y

j
n
e
s
i
d
e
_
e
x
i
t
_
1

/
/
(
*
)
s
i
d
e
e
x
i
t
i
f
p
r
i
m
e
s
i
s
n
o
t
a
n
a
r
r
a
y

s
u
b
e
s
p
,
8

/
/
b
u
m
p
s
t
a
c
k
f
o
r
c
a
l
l
a
l
i
g
n
m
e
n
t
c
o
n
v
e
n
t
i
o
n

p
u
s
h
f
a
l
s
e

/
/
p
u
s
h
l
a
s
t
a
r
g
u
m
e
n
t
f
o
r
c
a
l
l

p
u
s
h
e
s
i

/
/
p
u
s
h
f
i
r
s
t
a
r
g
u
m
e
n
t
f
o
r
c
a
l
l

c
a
l
l
j
s
_
A
r
r
a
y
_
s
e
t

/
/
c
a
l
l
f
u
n
c
t
i
o
n
t
o
s
e
t
a
r
r
a
y
e
l
e
m
e
n
t

a
d
d
e
s
p
,
8

/
/
c
l
e
a
n
u
p
e
x
t
r
a
s
t
a
c
k
s
p
a
c
e

m
o
v
e
c
x
,
e
b
x

/
/
(
*
)
c
r
e
a
t
e
d
b
y
r
e
g
i
s
t
e
r
a
l
l
o
c
a
t
o
r

t
e
s
t
e
a
x
,
e
a
x

/
/
(
*
)
t
e
s
t
r
e
t
u
r
n
v
a
l
u
e
o
f
j
s
_
A
r
r
a
y
_
s
e
t

j
e
s
i
d
e
_
e
x
i
t
_
2

/
/
(
*
)
s
i
d
e
e
x
i
t
i
f
c
a
l
l
f
a
i
l
e
d

.
.
.

s
i
d
e
_
e
x
i
t
_
1
:

m
o
v
e
c
x
,
e
b
p
(
-
4
)

/
/
r
e
s
t
o
r
e
e
c
x

m
o
v
e
s
p
,
e
b
p

/
/
r
e
s
t
o
r
e
e
s
p

j
m
p
e
p
i
l
o
g

/
/
j
u
m
p
t
o
r
e
t
s
t
a
t
e
m
e
n
t

Figure
4.

x86
snippetfor

sam
ple

program
.T

his
is

the
x86

code
com

piled
from

the
L

IR
snippetin

Figure
3.M

ostL
IR

instructions
com

pile
to

a
single

x86
instruction.Instructions

m
arked

w
ith

(
*
)

w
ould

be
om

itted
by

an
idealized

com
piler

thatknew
thatnone

of
the

side
exits

w
ould

everbe
taken.T

he
17

instructions
generated

by
the

com
pilercom

pare
favorably

w
ith

the
100+

instructions
thatthe

interpreterw
ould

execute
forthe

sam
e

code
snippet,including

4
indirectjum

ps.

i=2.
T

his
is

the
first

iteration
of

the
outer

loop.
T

he
loop

on
lines

4-5
becom

es
hoton

its
second

iteration,so
TraceM

onkey
en-

ters
recording

m
ode

on
line

4.
In

recording
m

ode,
TraceM

onkey
records

the
code

along
the

trace
in

a
low

-levelcom
pilerinterm

edi-
ate

representation
w

e
callLIR

.T
he

L
IR

trace
encodes

allthe
oper-

ations
perform

ed
and

the
types

ofalloperands.T
he

L
IR

trace
also

encodes
guards,w

hich
are

checks
thatverify

thatthe
controlflow

and
types

are
identical

to
those

observed
during

trace
recording.

T
hus,on

later
executions,if

and
only

if
allguards

are
passed,the

trace
has

the
required

program
sem

antics.
TraceM

onkey
stops

recording
w

hen
execution

returns
to

the
loop

header
or

exits
the

loop.In
this

case,execution
returns

to
the

loop
headeron

line
4.

A
fter

recording
is

finished,TraceM
onkey

com
piles

the
trace

to
native

code
using

the
recorded

type
inform

ation
for

optim
ization.

T
he

result
is

a
native

code
fragm

ent
that

can
be

entered
if

the

interpreter
PC

and
the

types
of

values
m

atch
those

observed
w

hen
trace

recording
w

as
started.

T
he

first
trace

in
our

exam
ple,

T
4
5 ,

covers
lines

4
and

5.T
his

trace
can

be
entered

ifthe
PC

is
atline

4,
i

and
k

are
integers,and

p
r
i
m
e
s

is
an

object.A
ftercom

piling
T

4
5 ,

TraceM
onkey

returns
to

the
interpreterand

loops
back

to
line

1.
i=3.N

ow
the

loop
header

at
line

1
has

becom
e

hot,so
Trace-

M
onkey

starts
recording.

W
hen

recording
reaches

line
4,

Trace-
M

onkey
observes

thatithas
reached

an
inner

loop
header

thatal-
ready

has
a

com
piled

trace,so
TraceM

onkey
attem

pts
to

nest
the

innerloop
inside

the
currenttrace.T

he
firststep

is
to

callthe
inner

trace
asa

subroutine.T
hisexecutesthe

loop
on

line
4

to
com

pletion
and

then
returns

to
the

recorder.TraceM
onkey

verifies
thatthe

call
w

as
successfuland

then
records

the
callto

the
innertrace

as
partof

the
currenttrace.R

ecording
continues

untilexecution
reaches

line
1,and

atw
hich

pointTraceM
onkey

finishes
and

com
piles

a
trace

forthe
outerloop,T

1
6 .

