
Trace-based Just-in-Time Type Specialization for Dynamic
Languages

Andreas Gal∗+, Brendan Eich∗, Mike Shaver∗, David Anderson∗, David Mandelin∗,
Mohammad R. Haghighat$, Blake Kaplan∗, Graydon Hoare∗, Boris Zbarsky∗, Jason Orendorff∗,

Jesse Ruderman∗, Edwin Smith#, Rick Reitmaier#, Michael Bebenita+, Mason Chang+#, Michael Franz+

Mozilla Corporation∗

{gal,brendan,shaver,danderson,dmandelin,mrbkap,graydon,bz,jorendorff,jruderman}@mozilla.com

Adobe Corporation#

{edwsmith,rreitmai}@adobe.com

Intel Corporation$

{mohammad.r.haghighat}@intel.com

University of California, Irvine+

{mbebenit,changm,franz}@uci.edu

Abstract
Dynamic languages such as JavaScript are more difficult to com-
pile than statically typed ones. Since no concrete type information
is available, traditional compilers need to emit generic code that can
handle all possible type combinations at runtime. We present an al-
ternative compilation technique for dynamically-typed languages
that identifies frequently executed loop traces at run-time and then
generates machine code on the fly that is specialized for the ac-
tual dynamic types occurring on each path through the loop. Our
method provides cheap inter-procedural type specialization, and an
elegant and efficient way of incrementally compiling lazily discov-
ered alternative paths through nested loops. We have implemented
a dynamic compiler for JavaScript based on our technique and we
have measured speedups of 10x and more for certain benchmark
programs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors — Incremental compilers, code generation.

General Terms Design, Experimentation, Measurement, Perfor-
mance.

Keywords JavaScript, just-in-time compilation, trace trees.

1. Introduction
Dynamic languages such as JavaScript, Python, and Ruby, are pop-
ular since they are expressive, accessible to non-experts, and make
deployment as easy as distributing a source file. They are used for
small scripts as well as for complex applications. JavaScript, for
example, is the de facto standard for client-side web programming
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and is used for the application logic of browser-based productivity
applications such as Google Mail, Google Docs and Zimbra Col-
laboration Suite. In this domain, in order to provide a fluid user
experience and enable a new generation of applications, virtual ma-
chines must provide a low startup time and high performance.

Compilers for statically typed languages rely on type informa-
tion to generate efficient machine code. In a dynamically typed pro-
gramming language such as JavaScript, the types of expressions
may vary at runtime. This means that the compiler can no longer
easily transform operations into machine instructions that operate
on one specific type. Without exact type information, the compiler
must emit slower generalized machine code that can deal with all
potential type combinations. While compile-time static type infer-
ence might be able to gather type information to generate opti-
mized machine code, traditional static analysis is very expensive
and hence not well suited for the highly interactive environment of
a web browser.

We present a trace-based compilation technique for dynamic
languages that reconciles speed of compilation with excellent per-
formance of the generated machine code. Our system uses a mixed-
mode execution approach: the system starts running JavaScript in a
fast-starting bytecode interpreter. As the program runs, the system
identifies hot (frequently executed) bytecode sequences, records
them, and compiles them to fast native code. We call such a se-
quence of instructions a trace.

Unlike method-based dynamic compilers, our dynamic com-
piler operates at the granularity of individual loops. This design
choice is based on the expectation that programs spend most of
their time in hot loops. Even in dynamically typed languages, we
expect hot loops to be mostly type-stable, meaning that the types of
values are invariant. (12) For example, we would expect loop coun-
ters that start as integers to remain integers for all iterations. When
both of these expectations hold, a trace-based compiler can cover
the program execution with a small number of type-specialized, ef-
ficiently compiled traces.

Each compiled trace covers one path through the program with
one mapping of values to types. When the VM executes a compiled
trace, it cannot guarantee that the same path will be followed
or that the same types will occur in subsequent loop iterations.
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loop.
T

he
loop

on
lines

4-5
becom

es
hoton

its
second

iteration,so
TraceM

onkey
en-

ters
recording

m
ode

on
line

4.
In

recording
m

ode,
TraceM

onkey
records

the
code

along
the

trace
in

a
low

-levelcom
pilerinterm

edi-
ate

representation
w

e
callLIR

.T
he

L
IR

trace
encodes

allthe
oper-

ations
perform

ed
and

the
types

ofalloperands.T
he

L
IR

trace
also

encodes
guards,w

hich
are

checks
thatverify

thatthe
controlflow

and
types

are
identical

to
those

observed
during

trace
recording.

T
hus,on

later
executions,if

and
only

if
allguards

are
passed,the

trace
has

the
required

program
sem

antics.
TraceM

onkey
stops

recording
w

hen
execution

returns
to

the
loop

header
or

exits
the

loop.In
this

case,execution
returns

to
the

loop
headeron

line
4.

A
fter

recording
is

finished,TraceM
onkey

com
piles

the
trace

to
native

code
using

the
recorded

type
inform

ation
for

optim
ization.

T
he

result
is

a
native

code
fragm

ent
that

can
be

entered
if

the

interpreter
PC

and
the

types
of

values
m

atch
those

observed
w

hen
trace

recording
w

as
started.

T
he

first
trace

in
our

exam
ple,

T
4
5 ,

covers
lines

4
and

5.T
his

trace
can

be
entered

ifthe
PC

is
atline

4,
i

and
k

are
integers,and

p
r
i
m
e
s

is
an

object.A
ftercom

piling
T

4
5 ,

TraceM
onkey

returns
to

the
interpreterand

loops
back

to
line

1.
i=3.N

ow
the

loop
header

at
line

1
has

becom
e

hot,so
Trace-

M
onkey

starts
recording.

W
hen

recording
reaches

line
4,

Trace-
M

onkey
observes

thatithas
reached

an
inner

loop
header

thatal-
ready

has
a

com
piled

trace,so
TraceM

onkey
attem

pts
to

nest
the

innerloop
inside

the
currenttrace.T

he
firststep

is
to

callthe
inner

trace
asa

subroutine.T
hisexecutesthe

loop
on

line
4

to
com

pletion
and

then
returns

to
the

recorder.TraceM
onkey

verifies
thatthe

call
w

as
successfuland

then
records

the
callto

the
innertrace

as
partof

the
currenttrace.R

ecording
continues

untilexecution
reaches

line
1,and

atw
hich

pointTraceM
onkey

finishes
and

com
piles

a
trace

forthe
outerloop,T

1
6 .


