
Tr
ac

e-
ba

se
d

Ju
st

-in
-T

im
e

Ty
pe

Sp
ec

ia
liz

at
io

n
fo

r
D

yn
am

ic
L

an
gu

ag
es

A
nd

re
as

G
al
∗+

,B
re

nd
an

E
ic

h∗
,M

ik
e

Sh
av

er
∗ ,

D
av

id
A

nd
er

so
n∗

,D
av

id
M

an
de

lin
∗ ,

M
oh

am
m

ad
R

.H
ag

hi
gh

at
$
,B

la
ke

K
ap

la
n∗

,G
ra

yd
on

H
oa

re
∗ ,

B
or

is
Z

ba
rs

ky
∗ ,

Ja
so

n
O

re
nd

or
ff
∗ ,

Je
ss

e
R

ud
er

m
an

∗ ,
E

dw
in

Sm
ith

#
,R

ic
k

R
ei

tm
ai

er
#

,M
ic

ha
el

B
eb

en
ita

+
,M

as
on

C
ha

ng
+

#
,M

ic
ha

el
Fr

an
z+

M
oz

ill
a

C
or

po
ra

tio
n∗

{g
a
l
,
b
r
e
n
d
a
n
,
s
h
a
v
e
r
,
d
a
n
d
e
r
s
o
n
,
d
m
a
n
d
e
l
i
n
,
m
r
b
k
a
p
,
g
r
a
y
d
o
n
,
b
z
,
j
o
r
e
n
d
o
r
f
f
,
j
r
u
d
e
r
m
a
n
}@
m
o
z
i
l
l
a
.
c
o
m

A
do

be
C

or
po

ra
tio

n#

{e
d
w
s
m
i
t
h
,
r
r
e
i
t
m
a
i
}@
a
d
o
b
e
.
c
o
m

In
te

lC
or

po
ra

tio
n$

{m
o
h
a
m
m
a
d
.
r
.
h
a
g
h
i
g
h
a
t
}@
i
n
t
e
l
.
c
o
m

U
ni

ve
rs

ity
of

C
al

if
or

ni
a,

Ir
vi

ne
+

{m
b
e
b
e
n
i
t
,
c
h
a
n
g
m
,
f
r
a
n
z
}@
u
c
i
.
e
d
u

A
bs

tr
ac

t
D

yn
am

ic
la

ng
ua

ge
s

su
ch

as
Ja

va
Sc

ri
pt

ar
e

m
or

e
di

ffi
cu

lt
to

co
m

-
pi

le
th

an
st

at
ic

al
ly

ty
pe

d
on

es
.S

in
ce

no
co

nc
re

te
ty

pe
in

fo
rm

at
io

n
is

av
ai

la
bl

e,
tr

ad
iti

on
al

co
m

pi
le

rs
ne

ed
to

em
it

ge
ne

ri
c

co
de

th
at

ca
n

ha
nd

le
al

lp
os

si
bl

e
ty

pe
co

m
bi

na
tio

ns
at

ru
nt

im
e.

W
e

pr
es

en
ta

n
al

-
te

rn
at

iv
e

co
m

pi
la

tio
n

te
ch

ni
qu

e
fo

r
dy

na
m

ic
al

ly
-t

yp
ed

la
ng

ua
ge

s
th

at
id

en
tifi

es
fr

eq
ue

nt
ly

ex
ec

ut
ed

lo
op

tr
ac

es
at

ru
n-

tim
e

an
d

th
en

ge
ne

ra
te

s
m

ac
hi

ne
co

de
on

th
e

fly
th

at
is

sp
ec

ia
liz

ed
fo

r
th

e
ac

-
tu

al
dy

na
m

ic
ty

pe
s

oc
cu

rr
in

g
on

ea
ch

pa
th

th
ro

ug
h

th
e

lo
op

.O
ur

m
et

ho
d

pr
ov

id
es

ch
ea

p
in

te
r-

pr
oc

ed
ur

al
ty

pe
sp

ec
ia

liz
at

io
n,

an
d

an
el

eg
an

ta
nd

ef
fic

ie
nt

w
ay

of
in

cr
em

en
ta

lly
co

m
pi

lin
g

la
zi

ly
di

sc
ov

-
er

ed
al

te
rn

at
iv

e
pa

th
s

th
ro

ug
h

ne
st

ed
lo

op
s.

W
e

ha
ve

im
pl

em
en

te
d

a
dy

na
m

ic
co

m
pi

le
r

fo
r

Ja
va

Sc
ri

pt
ba

se
d

on
ou

r
te

ch
ni

qu
e

an
d

w
e

ha
ve

m
ea

su
re

d
sp

ee
du

ps
of

10
x

an
d

m
or

e
fo

r
ce

rt
ai

n
be

nc
hm

ar
k

pr
og

ra
m

s.

C
at

eg
or

ie
s

an
d

Su
bj

ec
t

D
es

cr
ip

to
rs

D
.3

.4
[P

ro
gr

am
m

in
g

La
n-

gu
ag

es
]:

Pr
oc

es
so

rs
—

In
cr

em
en

ta
lc

om
pi

le
rs

,c
od

e
ge

ne
ra

tio
n.

G
en

er
al

Te
rm

s
D

es
ig

n,
E

xp
er

im
en

ta
tio

n,
M

ea
su

re
m

en
t,

Pe
rf

or
-

m
an

ce
.

Ke
yw

or
ds

Ja
va

Sc
ri

pt
,j

us
t-

in
-t

im
e

co
m

pi
la

tio
n,

tr
ac

e
tr

ee
s.

1.
In

tr
od

uc
tio

n
D

yn
am

ic
la

ng
ua

ge
s

su
ch

as
Ja

va
Sc

ri
pt

,P
yt

ho
n,

an
d

R
ub

y,
ar

e
po

p-
ul

ar
si

nc
e

th
ey

ar
e

ex
pr

es
si

ve
,a

cc
es

si
bl

e
to

no
n-

ex
pe

rt
s,

an
d

m
ak

e
de

pl
oy

m
en

ta
s

ea
sy

as
di

st
ri

bu
tin

g
a

so
ur

ce
fil

e.
T

he
y

ar
e

us
ed

fo
r

sm
al

l
sc

ri
pt

s
as

w
el

l
as

fo
r

co
m

pl
ex

ap
pl

ic
at

io
ns

.
Ja

va
Sc

ri
pt

,
fo

r
ex

am
pl

e,
is

th
e

de
fa

ct
o

st
an

da
rd

fo
rc

lie
nt

-s
id

e
w

eb
pr

og
ra

m
m

in
g

Pe
rm

is
si

on
to

m
ak

e
di

gi
ta

l
or

ha
rd

co
pi

es
of

al
l

or
pa

rt
of

th
is

w
or

k
fo

r
pe

rs
on

al
or

cl
as

sr
oo

m
us

e
is

gr
an

te
d

w
ith

ou
tf

ee
pr

ov
id

ed
th

at
co

pi
es

ar
e

no
tm

ad
e

or
di

st
ri

bu
te

d
fo

rp
ro

fit
or

co
m

m
er

ci
al

ad
va

nt
ag

e
an

d
th

at
co

pi
es

be
ar

th
is

no
tic

e
an

d
th

e
fu

ll
ci

ta
tio

n
on

th
e

fir
st

pa
ge

.T
o

co
py

ot
he

rw
is

e,
to

re
pu

bl
is

h,
to

po
st

on
se

rv
er

s
or

to
re

di
st

ri
bu

te
to

lis
ts

,r
eq

ui
re

s
pr

io
rs

pe
ci

fic
pe

rm
is

si
on

an
d/

or
a

fe
e.

PL
D

I’
09

,
Ju

ne
15

–2
0,

20
09

,D
ub

lin
,I

re
la

nd
.

C
op

yr
ig

ht
c ©

20
09

A
C

M
97

8-
1-

60
55

8-
39

2-
1/

09
/0

6.
..

$5
.0

0

an
d

is
us

ed
fo

rt
he

ap
pl

ic
at

io
n

lo
gi

c
of

br
ow

se
r-

ba
se

d
pr

od
uc

tiv
ity

ap
pl

ic
at

io
ns

su
ch

as
G

oo
gl

e
M

ai
l,

G
oo

gl
e

D
oc

s
an

d
Z

im
br

a
C

ol
-

la
bo

ra
tio

n
Su

ite
.

In
th

is
do

m
ai

n,
in

or
de

r
to

pr
ov

id
e

a
flu

id
us

er
ex

pe
ri

en
ce

an
d

en
ab

le
a

ne
w

ge
ne

ra
tio

n
of

ap
pl

ic
at

io
ns

,v
ir

tu
al

m
a-

ch
in

es
m

us
tp

ro
vi

de
a

lo
w

st
ar

tu
p

tim
e

an
d

hi
gh

pe
rf

or
m

an
ce

.
C

om
pi

le
rs

fo
r

st
at

ic
al

ly
ty

pe
d

la
ng

ua
ge

s
re

ly
on

ty
pe

in
fo

rm
a-

tio
n

to
ge

ne
ra

te
ef

fic
ie

nt
m

ac
hi

ne
co

de
.I

n
a

dy
na

m
ic

al
ly

ty
pe

d
pr

o-
gr

am
m

in
g

la
ng

ua
ge

su
ch

as
Ja

va
Sc

ri
pt

,
th

e
ty

pe
s

of
ex

pr
es

si
on

s
m

ay
va

ry
at

ru
nt

im
e.

T
hi

s
m

ea
ns

th
at

th
e

co
m

pi
le

r
ca

n
no

lo
ng

er
ea

si
ly

tr
an

sf
or

m
op

er
at

io
ns

in
to

m
ac

hi
ne

in
st

ru
ct

io
ns

th
at

op
er

at
e

on
on

e
sp

ec
ifi

c
ty

pe
.W

ith
ou

te
xa

ct
ty

pe
in

fo
rm

at
io

n,
th

e
co

m
pi

le
r

m
us

te
m

it
sl

ow
er

ge
ne

ra
liz

ed
m

ac
hi

ne
co

de
th

at
ca

n
de

al
w

ith
al

l
po

te
nt

ia
lt

yp
e

co
m

bi
na

tio
ns

.W
hi

le
co

m
pi

le
-t

im
e

st
at

ic
ty

pe
in

fe
r-

en
ce

m
ig

ht
be

ab
le

to
ga

th
er

ty
pe

in
fo

rm
at

io
n

to
ge

ne
ra

te
op

ti-
m

iz
ed

m
ac

hi
ne

co
de

,
tr

ad
iti

on
al

st
at

ic
an

al
ys

is
is

ve
ry

ex
pe

ns
iv

e
an

d
he

nc
e

no
tw

el
ls

ui
te

d
fo

rt
he

hi
gh

ly
in

te
ra

ct
iv

e
en

vi
ro

nm
en

to
f

a
w

eb
br

ow
se

r.
W

e
pr

es
en

t
a

tr
ac

e-
ba

se
d

co
m

pi
la

tio
n

te
ch

ni
qu

e
fo

r
dy

na
m

ic
la

ng
ua

ge
s

th
at

re
co

nc
ile

s
sp

ee
d

of
co

m
pi

la
tio

n
w

ith
ex

ce
lle

nt
pe

r-
fo

rm
an

ce
of

th
e

ge
ne

ra
te

d
m

ac
hi

ne
co

de
.O

ur
sy

st
em

us
es

a
m

ix
ed

-
m

od
e

ex
ec

ut
io

n
ap

pr
oa

ch
:t

he
sy

st
em

st
ar

ts
ru

nn
in

g
Ja

va
Sc

ri
pt

in
a

fa
st

-s
ta

rt
in

g
by

te
co

de
in

te
rp

re
te

r.
A

s
th

e
pr

og
ra

m
ru

ns
,t

he
sy

st
em

id
en

tifi
es

ho
t

(f
re

qu
en

tly
ex

ec
ut

ed
)

by
te

co
de

se
qu

en
ce

s,
re

co
rd

s
th

em
,

an
d

co
m

pi
le

s
th

em
to

fa
st

na
tiv

e
co

de
.

W
e

ca
ll

su
ch

a
se

-
qu

en
ce

of
in

st
ru

ct
io

ns
a

tr
ac

e.
U

nl
ik

e
m

et
ho

d-
ba

se
d

dy
na

m
ic

co
m

pi
le

rs
,

ou
r

dy
na

m
ic

co
m

-
pi

le
r

op
er

at
es

at
th

e
gr

an
ul

ar
ity

of
in

di
vi

du
al

lo
op

s.
T

hi
s

de
si

gn
ch

oi
ce

is
ba

se
d

on
th

e
ex

pe
ct

at
io

n
th

at
pr

og
ra

m
s

sp
en

d
m

os
t

of
th

ei
r

tim
e

in
ho

tl
oo

ps
.E

ve
n

in
dy

na
m

ic
al

ly
ty

pe
d

la
ng

ua
ge

s,
w

e
ex

pe
ct

ho
tl

oo
ps

to
be

m
os

tly
ty

pe
-s

ta
bl

e,
m

ea
ni

ng
th

at
th

e
ty

pe
s

of
va

lu
es

ar
e

in
va

ri
an

t.
(1

2)
Fo

re
xa

m
pl

e,
w

e
w

ou
ld

ex
pe

ct
lo

op
co

un
-

te
rs

th
at

st
ar

ta
s

in
te

ge
rs

to
re

m
ai

n
in

te
ge

rs
fo

ra
ll

ite
ra

tio
ns

.W
he

n
bo

th
of

th
es

e
ex

pe
ct

at
io

ns
ho

ld
,a

tr
ac

e-
ba

se
d

co
m

pi
le

r
ca

n
co

ve
r

th
e

pr
og

ra
m

ex
ec

ut
io

n
w

ith
a

sm
al

ln
um

be
ro

ft
yp

e-
sp

ec
ia

liz
ed

,e
f-

fic
ie

nt
ly

co
m

pi
le

d
tr

ac
es

.
E

ac
h

co
m

pi
le

d
tr

ac
e

co
ve

rs
on

e
pa

th
th

ro
ug

h
th

e
pr

og
ra

m
w

ith
on

e
m

ap
pi

ng
of

va
lu

es
to

ty
pe

s.
W

he
n

th
e

V
M

ex
ec

ut
es

a
co

m
pi

le
d

tr
ac

e,
it

ca
nn

ot
gu

ar
an

te
e

th
at

th
e

sa
m

e
pa

th
w

ill
be

fo
llo

w
ed

or
th

at
th

e
sa

m
e

ty
pe

s
w

ill
oc

cu
r

in
su

bs
eq

ue
nt

lo
op

ite
ra

tio
ns

.

Hence, recording and compiling a trace speculates that the path and
typing will be exactly as they were during recording for subsequent
iterations of the loop.

Every compiled trace contains all the guards (checks) required
to validate the speculation. If one of the guards fails (if control
flow is different, or a value of a different type is generated), the
trace exits. If an exit becomes hot, the VM can record a branch
trace starting at the exit to cover the new path. In this way, the VM
records a trace tree covering all the hot paths through the loop.

Nested loops can be difficult to optimize for tracing VMs. In
a naı̈ve implementation, inner loops would become hot first, and
the VM would start tracing there. When the inner loop exits, the
VM would detect that a different branch was taken. The VM would
try to record a branch trace, and find that the trace reaches not the
inner loop header, but the outer loop header. At this point, the VM
could continue tracing until it reaches the inner loop header again,
thus tracing the outer loop inside a trace tree for the inner loop.
But this requires tracing a copy of the outer loop for every side exit
and type combination in the inner loop. In essence, this is a form
of unintended tail duplication, which can easily overflow the code
cache. Alternatively, the VM could simply stop tracing, and give up
on ever tracing outer loops.

We solve the nested loop problem by recording nested trace
trees. Our system traces the inner loop exactly as the naı̈ve version.
The system stops extending the inner tree when it reaches an outer
loop, but then it starts a new trace at the outer loop header. When
the outer loop reaches the inner loop header, the system tries to call
the trace tree for the inner loop. If the call succeeds, the VM records
the call to the inner tree as part of the outer trace and finishes
the outer trace as normal. In this way, our system can trace any
number of loops nested to any depth without causing excessive tail
duplication.

These techniques allow a VM to dynamically translate a pro-
gram to nested, type-specialized trace trees. Because traces can
cross function call boundaries, our techniques also achieve the ef-
fects of inlining. Because traces have no internal control-flow joins,
they can be optimized in linear time by a simple compiler (10).
Thus, our tracing VM efficiently performs the same kind of op-
timizations that would require interprocedural analysis in a static
optimization setting. This makes tracing an attractive and effective
tool to type specialize even complex function call-rich code.

We implemented these techniques for an existing JavaScript in-
terpreter, SpiderMonkey. We call the resulting tracing VM Trace-
Monkey. TraceMonkey supports all the JavaScript features of Spi-
derMonkey, with a 2x-20x speedup for traceable programs.

This paper makes the following contributions:

• We explain an algorithm for dynamically forming trace trees to
cover a program, representing nested loops as nested trace trees.

• We explain how to speculatively generate efficient type-specialized
code for traces from dynamic language programs.

• We validate our tracing techniques in an implementation based
on the SpiderMonkey JavaScript interpreter, achieving 2x-20x
speedups on many programs.

The remainder of this paper is organized as follows. Section 3 is
a general overview of trace tree based compilation we use to cap-
ture and compile frequently executed code regions. In Section 4
we describe our approach of covering nested loops using a num-
ber of individual trace trees. In Section 5 we describe our trace-
compilation based speculative type specialization approach we use
to generate efficient machine code from recorded bytecode traces.
Our implementation of a dynamic type-specializing compiler for
JavaScript is described in Section 6. Related work is discussed in
Section 8. In Section 7 we evaluate our dynamic compiler based on

1 for (var i = 2; i < 100; ++i) {
2 if (!primes[i])
3 continue;
4 for (var k = i + i; i < 100; k += i)
5 primes[k] = false;
6 }

Figure 1. Sample program: sieve of Eratosthenes. primes is
initialized to an array of 100 false values on entry to this code
snippet.

Interpret
Bytecodes

Monitor

Record
LIR Trace

Execute
Compiled Trace

Enter
Compiled Trace

Compile
LIR Trace

Leave
Compiled Trace

loop
edge

hot
loop/exit

abort
recording

finish at
loop header

cold/blacklisted
loop/exit

compiled trace
ready

loop edge with
same types

side exit to
existing trace

side exit,
no existing trace

Overhead

Interpreting

Native

Symbol Key

Figure 2. State machine describing the major activities of Trace-
Monkey and the conditions that cause transitions to a new activ-
ity. In the dark box, TM executes JS as compiled traces. In the
light gray boxes, TM executes JS in the standard interpreter. White
boxes are overhead. Thus, to maximize performance, we need to
maximize time spent in the darkest box and minimize time spent in
the white boxes. The best case is a loop where the types at the loop
edge are the same as the types on entry–then TM can stay in native
code until the loop is done.

a set of industry benchmarks. The paper ends with conclusions in
Section 9 and an outlook on future work is presented in Section 10.

2. Overview: Example Tracing Run
This section provides an overview of our system by describing
how TraceMonkey executes an example program. The example
program, shown in Figure 1, computes the first 100 prime numbers
with nested loops. The narrative should be read along with Figure 2,
which describes the activities TraceMonkey performs and when it
transitions between the loops.

TraceMonkey always begins executing a program in the byte-
code interpreter. Every loop back edge is a potential trace point.
When the interpreter crosses a loop edge, TraceMonkey invokes
the trace monitor, which may decide to record or execute a native
trace. At the start of execution, there are no compiled traces yet, so
the trace monitor counts the number of times each loop back edge is
executed until a loop becomes hot, currently after 2 crossings. Note
that the way our loops are compiled, the loop edge is crossed before
entering the loop, so the second crossing occurs immediately after
the first iteration.

Here is the sequence of events broken down by outer loop
iteration:

v
0
:
=
l
d
s
t
a
t
e
[
7
4
8
]

/
/
l
o
a
d
p
r
i
m
e
s
f
r
o
m
t
h
e
t
r
a
c
e
a
c
t
i
v
a
t
i
o
n
r
e
c
o
r
d

s
t
s
p
[
0
]
,
v
0

/
/
s
t
o
r
e
p
r
i
m
e
s
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

v
1
:
=
l
d
s
t
a
t
e
[
7
6
4
]

/
/
l
o
a
d
k
f
r
o
m
t
h
e
t
r
a
c
e
a
c
t
i
v
a
t
i
o
n
r
e
c
o
r
d

v
2
:
=
i
2
f
(
v
1
)

/
/
c
o
n
v
e
r
t
k
f
r
o
m
i
n
t
t
o
d
o
u
b
l
e

s
t
s
p
[
8
]
,
v
1

/
/
s
t
o
r
e
k
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

s
t
s
p
[
1
6
]
,
0

/
/
s
t
o
r
e
f
a
l
s
e
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

v
3
:
=
l
d
v
0
[
4
]

/
/
l
o
a
d
c
l
a
s
s
w
o
r
d
f
o
r
p
r
i
m
e
s

v
4
:
=
a
n
d
v
3
,
-
4

/
/
m
a
s
k
o
u
t
o
b
j
e
c
t
c
l
a
s
s
t
a
g
f
o
r
p
r
i
m
e
s

v
5
:
=
e
q
v
4
,
A
r
r
a
y

/
/
t
e
s
t
w
h
e
t
h
e
r
p
r
i
m
e
s
i
s
a
n
a
r
r
a
y

x
f
v
5

/
/
s
i
d
e
e
x
i
t
i
f
v
5
i
s
f
a
l
s
e

v
6
:
=
j
s
_
A
r
r
a
y
_
s
e
t
(
v
0
,
v
2
,
f
a
l
s
e
)

/
/
c
a
l
l
f
u
n
c
t
i
o
n
t
o
s
e
t
a
r
r
a
y
e
l
e
m
e
n
t

v
7
:
=
e
q
v
6
,
0

/
/
t
e
s
t
r
e
t
u
r
n
v
a
l
u
e
f
r
o
m
c
a
l
l

x
t
v
7

/
/
s
i
d
e
e
x
i
t
i
f
j
s
_
A
r
r
a
y
_
s
e
t
r
e
t
u
r
n
s
f
a
l
s
e
.

Figure
3.

L
IR

snippet
for

sam
ple

program
.T

his
is

the
L

IR
recorded

for
line

5
of

the
sam

ple
program

in
Figure

1.T
he

L
IR

encodes
the

sem
antics

in
SSA

form
using

tem
porary

variables.T
he

L
IR

also
encodes

all
the

stores
that

the
interpreter

w
ould

do
to

its
data

stack.
Som

etim
es

these
stores

can
be

optim
ized

aw
ay

as
the

stack
locations

are
live

only
on

exits
to

the
interpreter.Finally,the

L
IR

records
guards

and
side

exits
to

verify
the

assum
ptions

m
ade

in
this

recording:that
p
r
i
m
e
s

is
an

array
and

thatthe
callto

setits
elem

entsucceeds.

m
o
v
e
d
x
,
e
b
x
(
7
4
8
)

/
/
l
o
a
d
p
r
i
m
e
s
f
r
o
m
t
h
e
t
r
a
c
e
a
c
t
i
v
a
t
i
o
n
r
e
c
o
r
d

m
o
v
e
d
i
(
0
)
,
e
d
x

/
/
(
*
)
s
t
o
r
e
p
r
i
m
e
s
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

m
o
v
e
s
i
,
e
b
x
(
7
6
4
)

/
/
l
o
a
d
k
f
r
o
m
t
h
e
t
r
a
c
e
a
c
t
i
v
a
t
i
o
n
r
e
c
o
r
d

m
o
v
e
d
i
(
8
)
,
e
s
i

/
/
(
*
)
s
t
o
r
e
k
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

m
o
v
e
d
i
(
1
6
)
,
0

/
/
(
*
)
s
t
o
r
e
f
a
l
s
e
t
o
i
n
t
e
r
p
r
e
t
e
r
s
t
a
c
k

m
o
v
e
a
x
,
e
d
x
(
4
)

/
/
(
*
)
l
o
a
d
o
b
j
e
c
t
c
l
a
s
s
w
o
r
d
f
o
r
p
r
i
m
e
s

a
n
d
e
a
x
,
-
4

/
/
(
*
)
m
a
s
k
o
u
t
o
b
j
e
c
t
c
l
a
s
s
t
a
g
f
o
r
p
r
i
m
e
s

c
m
p
e
a
x
,
A
r
r
a
y

/
/
(
*
)
t
e
s
t
w
h
e
t
h
e
r
p
r
i
m
e
s
i
s
a
n
a
r
r
a
y

j
n
e
s
i
d
e
_
e
x
i
t
_
1

/
/
(
*
)
s
i
d
e
e
x
i
t
i
f
p
r
i
m
e
s
i
s
n
o
t
a
n
a
r
r
a
y

s
u
b
e
s
p
,
8

/
/
b
u
m
p
s
t
a
c
k
f
o
r
c
a
l
l
a
l
i
g
n
m
e
n
t
c
o
n
v
e
n
t
i
o
n

p
u
s
h
f
a
l
s
e

/
/
p
u
s
h
l
a
s
t
a
r
g
u
m
e
n
t
f
o
r
c
a
l
l

p
u
s
h
e
s
i

/
/
p
u
s
h
f
i
r
s
t
a
r
g
u
m
e
n
t
f
o
r
c
a
l
l

c
a
l
l
j
s
_
A
r
r
a
y
_
s
e
t

/
/
c
a
l
l
f
u
n
c
t
i
o
n
t
o
s
e
t
a
r
r
a
y
e
l
e
m
e
n
t

a
d
d
e
s
p
,
8

/
/
c
l
e
a
n
u
p
e
x
t
r
a
s
t
a
c
k
s
p
a
c
e

m
o
v
e
c
x
,
e
b
x

/
/
(
*
)
c
r
e
a
t
e
d
b
y
r
e
g
i
s
t
e
r
a
l
l
o
c
a
t
o
r

t
e
s
t
e
a
x
,
e
a
x

/
/
(
*
)
t
e
s
t
r
e
t
u
r
n
v
a
l
u
e
o
f
j
s
_
A
r
r
a
y
_
s
e
t

j
e
s
i
d
e
_
e
x
i
t
_
2

/
/
(
*
)
s
i
d
e
e
x
i
t
i
f
c
a
l
l
f
a
i
l
e
d

.
.
.

s
i
d
e
_
e
x
i
t
_
1
:

m
o
v
e
c
x
,
e
b
p
(
-
4
)

/
/
r
e
s
t
o
r
e
e
c
x

m
o
v
e
s
p
,
e
b
p

/
/
r
e
s
t
o
r
e
e
s
p

j
m
p
e
p
i
l
o
g

/
/
j
u
m
p
t
o
r
e
t
s
t
a
t
e
m
e
n
t

Figure
4.

x86
snippetfor

sam
ple

program
.T

his
is

the
x86

code
com

piled
from

the
L

IR
snippetin

Figure
3.M

ostL
IR

instructions
com

pile
to

a
single

x86
instruction.Instructions

m
arked

w
ith

(
*
)

w
ould

be
om

itted
by

an
idealized

com
piler

thatknew
thatnone

of
the

side
exits

w
ould

everbe
taken.T

he
17

instructions
generated

by
the

com
pilercom

pare
favorably

w
ith

the
100+

instructions
thatthe

interpreterw
ould

execute
forthe

sam
e

code
snippet,including

4
indirectjum

ps.

i=2.
T

his
is

the
first

iteration
of

the
outer

loop.
T

he
loop

on
lines

4-5
becom

es
hoton

its
second

iteration,so
TraceM

onkey
en-

ters
recording

m
ode

on
line

4.
In

recording
m

ode,
TraceM

onkey
records

the
code

along
the

trace
in

a
low

-levelcom
pilerinterm

edi-
ate

representation
w

e
callLIR

.T
he

L
IR

trace
encodes

allthe
oper-

ations
perform

ed
and

the
types

ofalloperands.T
he

L
IR

trace
also

encodes
guards,w

hich
are

checks
thatverify

thatthe
controlflow

and
types

are
identical

to
those

observed
during

trace
recording.

T
hus,on

later
executions,if

and
only

if
allguards

are
passed,the

trace
has

the
required

program
sem

antics.
TraceM

onkey
stops

recording
w

hen
execution

returns
to

the
loop

header
or

exits
the

loop.In
this

case,execution
returns

to
the

loop
headeron

line
4.

A
fter

recording
is

finished,TraceM
onkey

com
piles

the
trace

to
native

code
using

the
recorded

type
inform

ation
for

optim
ization.

T
he

result
is

a
native

code
fragm

ent
that

can
be

entered
if

the

interpreter
PC

and
the

types
of

values
m

atch
those

observed
w

hen
trace

recording
w

as
started.

T
he

first
trace

in
our

exam
ple,

T
4
5 ,

covers
lines

4
and

5.T
his

trace
can

be
entered

ifthe
PC

is
atline

4,
i

and
k

are
integers,and

p
r
i
m
e
s

is
an

object.A
ftercom

piling
T

4
5 ,

TraceM
onkey

returns
to

the
interpreterand

loops
back

to
line

1.
i=3.N

ow
the

loop
header

at
line

1
has

becom
e

hot,so
Trace-

M
onkey

starts
recording.

W
hen

recording
reaches

line
4,

Trace-
M

onkey
observes

thatithas
reached

an
inner

loop
header

thatal-
ready

has
a

com
piled

trace,so
TraceM

onkey
attem

pts
to

nest
the

innerloop
inside

the
currenttrace.T

he
firststep

is
to

callthe
inner

trace
asa

subroutine.T
hisexecutesthe

loop
on

line
4

to
com

pletion
and

then
returns

to
the

recorder.TraceM
onkey

verifies
thatthe

call
w

as
successfuland

then
records

the
callto

the
innertrace

as
partof

the
currenttrace.R

ecording
continues

untilexecution
reaches

line
1,and

atw
hich

pointTraceM
onkey

finishes
and

com
piles

a
trace

forthe
outerloop,T

1
6 .

i=4. On this iteration, TraceMonkey calls T16. Because i=4, the
if statement on line 2 is taken. This branch was not taken in the
original trace, so this causes T16 to fail a guard and take a side exit.
The exit is not yet hot, so TraceMonkey returns to the interpreter,
which executes the continue statement.

i=5. TraceMonkey calls T16, which in turn calls the nested trace
T45. T16 loops back to its own header, starting the next iteration
without ever returning to the monitor.

i=6. On this iteration, the side exit on line 2 is taken again. This
time, the side exit becomes hot, so a trace T23,1 is recorded that
covers line 3 and returns to the loop header. Thus, the end of T23,1

jumps directly to the start of T16. The side exit is patched so that
on future iterations, it jumps directly to T23,1.

At this point, TraceMonkey has compiled enough traces to cover
the entire nested loop structure, so the rest of the program runs
entirely as native code.

3. Trace Trees
In this section, we describe traces, trace trees, and how they are
formed at run time. Although our techniques apply to any dynamic
language interpreter, we will describe them assuming a bytecode
interpreter to keep the exposition simple.

3.1 Traces
A trace is simply a program path, which may cross function call
boundaries. TraceMonkey focuses on loop traces, that originate at
a loop edge and represent a single iteration through the associated
loop.

Similar to an extended basic block, a trace is only entered at
the top, but may have many exits. In contrast to an extended basic
block, a trace can contain join nodes. Since a trace always only
follows one single path through the original program, however, join
nodes are not recognizable as such in a trace and have a single
predecessor node like regular nodes.

A typed trace is a trace annotated with a type for every variable
(including temporaries) on the trace. A typed trace also has an entry
type map giving the required types for variables used on the trace
before they are defined. For example, a trace could have a type map
(x: int, b: boolean), meaning that the trace may be entered
only if the value of the variable x is of type int and the value of b
is of type boolean. The entry type map is much like the signature
of a function.

In this paper, we only discuss typed loop traces, and we will
refer to them simply as “traces”. The key property of typed loop
traces is that they can be compiled to efficient machine code using
the same techniques used for typed languages.

In TraceMonkey, traces are recorded in trace-flavored SSA LIR
(low-level intermediate representation). In trace-flavored SSA (or
TSSA), phi nodes appear only at the entry point, which is reached
both on entry and via loop edges. The important LIR primitives
are constant values, memory loads and stores (by address and
offset), integer operators, floating-point operators, function calls,
and conditional exits. Type conversions, such as integer to double,
are represented by function calls. This makes the LIR used by
TraceMonkey independent of the concrete type system and type
conversion rules of the source language. The LIR operations are
generic enough that the backend compiler is language independent.
Figure 3 shows an example LIR trace.

Bytecode interpreters typically represent values in a various
complex data structures (e.g., hash tables) in a boxed format (i.e.,
with attached type tag bits). Since a trace is intended to represent
efficient code that eliminates all that complexity, our traces oper-
ate on unboxed values in simple variables and arrays as much as
possible.

A trace records all its intermediate values in a small activation
record area. To make variable accesses fast on trace, the trace also
imports local and global variables by unboxing them and copying
them to its activation record. Thus, the trace can read and write
these variables with simple loads and stores from a native activation
recording, independently of the boxing mechanism used by the
interpreter. When the trace exits, the VM boxes the values from
this native storage location and copies them back to the interpreter
structures.

For every control-flow branch in the source program, the
recorder generates conditional exit LIR instructions. These instruc-
tions exit from the trace if required control flow is different from
what it was at trace recording, ensuring that the trace instructions
are run only if they are supposed to. We call these instructions
guard instructions.

Most of our traces represent loops and end with the special loop
LIR instruction. This is just an unconditional branch to the top of
the trace. Such traces return only via guards.

Now, we describe the key optimizations that are performed as
part of recording LIR. All of these optimizations reduce complex
dynamic language constructs to simple typed constructs by spe-
cializing for the current trace. Each optimization requires guard in-
structions to verify their assumptions about the state and exit the
trace if necessary.

Type specialization.
All LIR primitives apply to operands of specific types. Thus,

LIR traces are necessarily type-specialized, and a compiler can
easily produce a translation that requires no type dispatches. A
typical bytecode interpreter carries tag bits along with each value,
and to perform any operation, must check the tag bits, dynamically
dispatch, mask out the tag bits to recover the untagged value,
perform the operation, and then reapply tags. LIR omits everything
except the operation itself.

A potential problem is that some operations can produce values
of unpredictable types. For example, reading a property from an
object could yield a value of any type, not necessarily the type
observed during recording. The recorder emits guard instructions
that conditionally exit if the operation yields a value of a different
type from that seen during recording. These guard instructions
guarantee that as long as execution is on trace, the types of values
match those of the typed trace. When the VM observes a side exit
along such a type guard, a new typed trace is recorded originating
at the side exit location, capturing the new type of the operation in
question.

Representation specialization: objects. In JavaScript, name
lookup semantics are complex and potentially expensive because
they include features like object inheritance and eval. To evaluate
an object property read expression like o.x, the interpreter must
search the property map of o and all of its prototypes and parents.
Property maps can be implemented with different data structures
(e.g., per-object hash tables or shared hash tables), so the search
process also must dispatch on the representation of each object
found during search. TraceMonkey can simply observe the result of
the search process and record the simplest possible LIR to access
the property value. For example, the search might finds the value of
o.x in the prototype of o, which uses a shared hash-table represen-
tation that places x in slot 2 of a property vector. Then the recorded
can generate LIR that reads o.x with just two or three loads: one to
get the prototype, possibly one to get the property value vector, and
one more to get slot 2 from the vector. This is a vast simplification
and speedup compared to the original interpreter code. Inheritance
relationships and object representations can change during execu-
tion, so the simplified code requires guard instructions that ensure
the object representation is the same. In TraceMonkey, objects’ rep-

