This repository has been archived by the owner on Sep 10, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathexec.py
52 lines (41 loc) · 1.97 KB
/
exec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from pathlib import Path
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from cifar_resnet import resnet20
from utils import Trainer
from shampoo import Shampoo
def get_dataloader(batch_size, root="~/.torch/data/cifar10"):
root = Path(root).expanduser()
if not root.exists():
root.mkdir()
root = str(root)
to_normalized_tensor = [transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]
data_augmentation = [transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip()]
train_loader = DataLoader(
datasets.CIFAR10(root, train=True, download=True,
transform=transforms.Compose(data_augmentation + to_normalized_tensor)),
batch_size=batch_size, shuffle=True)
test_loader = DataLoader(
datasets.CIFAR10(root, train=False, transform=transforms.Compose(to_normalized_tensor)),
batch_size=batch_size, shuffle=True)
return train_loader, test_loader
def main(batch_size, lr, momentum, epsilon, update_freq):
train_loader, test_loader = get_dataloader(batch_size)
model = resnet20()
optimizer = Shampoo(params=model.parameters(), lr=lr, momentum=momentum,
weight_decay=1e-4, epsilon=epsilon, update_freq=update_freq)
trainer = Trainer(model, optimizer, F.cross_entropy)
trainer.loop(200, train_loader, test_loader)
if __name__ == '__main__':
import argparse
p = argparse.ArgumentParser()
p.add_argument("--batchsize", type=int, default=128)
p.add_argument("--lr", type=float, default=0.1)
p.add_argument("--momentum", type=float, default=0.9)
p.add_argument("--epsilon", type=float, default=1e-4)
p.add_argument("--update_freq", type=int, default=1)
args = p.parse_args()
main(args.batchsize, args.lr, args.momentum, args.epsilon, args.update_freq)