-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheve_test.py
135 lines (114 loc) · 4.19 KB
/
eve_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from eve import Eve
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# variables
batch_size = 128
epochs = 100
cuda = torch.cuda.is_available()
# load data
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data/cifar10', train=True, download=True,
transform=transform),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data/cifar10', train=False, transform=transform),
batch_size=batch_size, shuffle=True)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, stride=1)
self.conv2 = nn.Conv2d(32, 32, kernel_size=3)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3)
self.dense1 = nn.Linear(in_features=64 * 25, out_features=512)
self.dense1_bn = nn.BatchNorm1d(512)
self.dense2 = nn.Linear(512, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(F.dropout(F.max_pool2d(self.conv2(x), 2), 0.25))
x = F.relu(self.conv3(x))
x = F.relu(F.dropout(F.max_pool2d(self.conv4(x), 2), 0.25))
x = x.view(-1, 64 * 25) # reshape
x = F.relu(self.dense1_bn(self.dense1(x)))
return F.log_softmax(self.dense2(x))
def train(epoch, model, optimizer):
model.train()
total_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
if cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
def closure():
optimizer.zero_grad() # reset reset optimizer
output = model(data)
loss = F.nll_loss(output, target) # negative log likelihood loss
loss.backward() # backprop
return loss
loss = optimizer.step(closure)
total_loss += loss.data[0] / len(train_loader)
if batch_idx % 20 == 0:
print('\rTrain Epoch: {} [{}/{} ({:>4.2%})] Loss: {:>5.3}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
batch_idx / len(train_loader), total_loss),
end="")
return total_loss
def test(epoch, model):
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
test_loss /= len(test_loader) # loss function already averages over batch size
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2%})'.format(
test_loss, correct, len(test_loader.dataset),
correct / len(test_loader.dataset)))
return test_loss
def plot(loss_a, loss_b, filename, ylabel):
import matplotlib
matplotlib.use("AGG")
import matplotlib.pyplot as plt
plt.plot(loss_a)
plt.plot(loss_b)
plt.legend(["Eve", "Adam"])
plt.xlabel("epochs")
plt.ylabel(ylabel)
plt.savefig(filename)
plt.clf()
print("Eve")
eve_loss = []
eve_test_loss = []
model = Net()
if cuda:
model.cuda()
optimizer = Eve(model.parameters())
for i in range(1, epochs + 1):
eve_loss.append(train(i, model, optimizer))
eve_test_loss.append(test(i, model))
print("Adam")
adam_loss = []
adam_test_loss = []
model = Net()
if cuda:
model.cuda()
optimizer = optim.Adam(model.parameters())
for i in range(1, epochs + 1):
adam_loss.append(train(i, model, optimizer))
adam_test_loss.append(test(i, model))
plot(eve_loss, adam_loss, "eve_loss.png", "training loss")
plot(eve_test_loss, adam_test_loss, "eve_test_loss.png", "testing loss")