** Models ** | ** Metrics ** | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.915 | 0.999 | 0.955 |
Decision Tree | 0.988 | 0.991 | 0.989 | |
Logistic Regression | 0.999 | 0.879 | 0.935 | |
Random Forest | 0.990 | 0.993 | 0.991 | |
Deep | MLP | 0.999 | 0.907 | 0.951 |
CNN | 0.988 | 0.923 | 0.954 | |
LSTM | 0.996 | 0.921 | 0.957 |
** Models ** | ** Metrics ** | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.611 | 0.898 | 0.727 |
Decision Tree | 0.650 | 0.502 | 0.566 | |
Logistic Regression | 0.974 | 0.505 | 0.665 | |
Random Forest | 0.998 | 0.388 | 0.559 | |
Deep | MLP | 0.620 | 0.801 | 0.699 |
CNN | 0.991 | 0.917 | 0.952 | |
LSTM | 0.993 | 0.920 | 0.955 |
** Models ** | ** Metrics ** | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.898 | 0.654 | 0.757 |
Decision Tree | 0.776 | 0.686 | 0.757 | |
Logistic Regression | 0.859 | 0.679 | 0.759 | |
Random Forest | 0.672 | 0.804 | 0.731 | |
Deep | MLP | 0.929 | 0.802 | 0.861 |
CNN | 0.777 | 0.988 | 0.870 | |
LSTM | 0.787 | 0.914 | 0.846 |
** Models ** | ** Metrics ** | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.810 | 0.630 | 0.708 |
Decision Tree | 0.693 | 0.642 | 0.667 | |
Logistic Regression | 0.788 | 0.642 | 0.707 | |
Random Forest | 0.642 | 0.776 | 0.703 | |
Deep | MLP | 0.859 | 0.679 | 0.759 |
CNN | 0.860 | 0.914 | 0.886 | |
LSTM | 0.776 | 0.938 | 0.849 |