Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.999 | 0.917 | 0.956 |
Decision Tree | 1.000 | 0.998 | 0.999 | |
Logistic Regression | 1.000 | 0.996 | 0.998 | |
Random Forest | 0.998 | 1.000 | 0.999 | |
Deep | MLP | 0.999 | 0.999 | 0.999 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.999 | 0.999 | 0.999 |
Decision Tree | 1.000 | 0.998 | 0.999 | |
Logistic Regression | 0.999 | 0.997 | 0.998 | |
Random Forest | 0.999 | 1.000 | 0.999 | |
Deep | MLP | 0.911 | 1.000 | 0.953 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.999 | 0.979 | 0.989 |
Decision Tree | 0.985 | 0.999 | 0.992 | |
Logistic Regression | 1.000 | 0.900 | 0.947 | |
Random Forest | 0.997 | 0.999 | 0.998 | |
Deep | MLP | 0.987 | 0.999 | 0.993 |
CNN | 0.982 | 0.922 | 0.951 | |
LSTM | 0.991 | 0.922 | 0.955 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.998 | 0.998 | 0.998 |
Decision Tree | 0.985 | 0.998 | 0.992 | |
Logistic Regression | 0.999 | 0.901 | 0.948 | |
Random Forest | 0.999 | 0.985 | 0.992 | |
Deep | MLP | 0.911 | 0.999 | 0.953 |
CNN | 0.985 | 0.923 | 0.953 | |
LSTM | 0.997 | 0.921 | 0.958 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.998 | 0.998 | 0.998 |
Decision Tree | 0.985 | 0.998 | 0.992 | |
Logistic Regression | 1.000 | 0.884 | 0.938 | |
Random Forest | 0.999 | 0.985 | 0.992 | |
Deep | MLP | 0.911 | 1.000 | 0.954 |
CNN | 0.990 | 0.922 | 0.955 | |
LSTM | 0.993 | 0.920 | 0.955 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.998 | 0.998 | 0.998 |
Decision Tree | 0.985 | 0.998 | 0.992 | |
Logistic Regression | 0.999 | 0.999 | 0.999 | |
Random Forest | 0.998 | 1.000 | 0.999 | |
Deep | MLP | 0.911 | 0.999 | 0.953 |
CNN | 0.992 | 0.921 | 0.955 | |
LSTM | 0.998 | 0.923 | 0.959 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.958 | 0.840 | 0.895 |
Decision Tree | 0.959 | 0.921 | 0.939 | |
Logistic Regression | 0.947 | 0.889 | 0.917 | |
Random Forest | 0.830 | 0.963 | 0.891 | |
Deep | MLP | 0.958 | 0.840 | 0.895 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.828 | 0.654 | 0.731 |
Decision Tree | 0.959 | 0.919 | 0.938 | |
Logistic Regression | 0.882 | 0.741 | 0.805 | |
Random Forest | 0.810 | 0.951 | 0.875 | |
Deep | MLP | 0.951 | 0.951 | 0.951 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.855 | 0.728 | 0.787 |
Decision Tree | 0.971 | 0.963 | 0.967 | |
Logistic Regression | 0.868 | 0.728 | 0.792 | |
Random Forest | 0.872 | 0.946 | 0.907 | |
Deep | MLP | 0.927 | 0.938 | 0.933 |
CNN | 0.900 | 1.000 | 0.947 | |
LSTM | 0.866 | 0.877 | 0.871 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.853 | 0.716 | 0.779 |
Decision Tree | 0.781 | 0.701 | 0.739 | |
Logistic Regression | 0.871 | 0.753 | 0.808 | |
Random Forest | 0.667 | 0.783 | 0.720 | |
Deep | MLP | 0.895 | 0.840 | 0.866 |
CNN | 0.868 | 0.975 | 0.919 | |
LSTM | 0.755 | 0.988 | 0.856 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.869 | 0.654 | 0.746 |
Decision Tree | 0.734 | 0.654 | 0.692 | |
Logistic Regression | 0.844 | 0.667 | 0.745 | |
Random Forest | 0.681 | 0.808 | 0.738 | |
Deep | MLP | 0.868 | 0.815 | 0.841 |
CNN | 0.857 | 0.963 | 0.907 | |
LSTM | 0.822 | 0.914 | 0.865 |
Models | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | ||
Traditional | SVM | 0.871 | 0.667 | 0.746 |
Decision Tree | 0.812 | 0.701 | 0.752 | |
Logistic Regression | 0.886 | 0.765 | 0.821 | |
Random Forest | 0.694 | 0.806 | 0.745 | |
Deep | MLP | 0.910 | 0.877 | 0.893 |
CNN | 0.939 | 0.951 | 0.945 | |
LSTM | 0.871 | 1.000 | 0.931 |