-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path00802.tex
278 lines (191 loc) · 7.67 KB
/
00802.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
\documentclass{ximera}
%\input{../../preamble.tex}
\input{preamble.tex}
\begin{document}
\begin{exercise} \label{YZ_3.4.1}
Suppose $A$ is a $3\times 3$ full rank matrix. Determine how many solutions the homogeneous system $Ax=0$ has and how many solutions the inhomogenous system $Ax=b$ has.
\begin{solution}
\ans
If $A$ has full rank, the reduced echelon form of $A$ is the identity matrix $I_3$. Since both $I_3x=0$ and $I_3x=b$ have unique solutions ($x=0$ and $x=b$ respective), so \RED{do} $Ax=0$ and $Ax=b$.
\end{solution}
\end{exercise}
\begin{exercise} \label{YZ_3.4.2}
Suppose $A$ is a $3\times 3$ matrix with rank less than $3$. Determine how many solution the homogeneous system $Ax=0$ has and how many solutions the inhomogenous system $Ax=b$ has.
\begin{solution}
\ans
If $A$ has rank lower than $3$. $Ax=0$ has infinitely many solutions. $Ax=b$ can have infinitely many solutions or no solution depending on whether the system of equations is consistent or \RED{inconsistent}.
\end{solution}
\end{exercise}
\begin{exercise} \label{YZ_3.4.3}
Let $A$ be a $3\times 3$ matrix. Suppose
\[
A\Matrix{-1\\2\\1}=\Matrix{3\\1\\1} \textup{\quad and \quad} A\Matrix{0\\4\\0}=\Matrix{-2\\0\\1}.
\]
\begin{enumeratea}
\item Find a solution to the inhomogeneous system
\[
Ax=\Matrix{1 \\ 1 \\2}.
\]
\item Is the solution unique?
\end{enumeratea}
\begin{solution}
\ans
\begin{enumeratea}
\item $x=\Matrix{-1 \\ 6 \\ 1}$ is a solution.
\item If $A$ has full rank, then the solution is unique. Otherwise, there are infinitely many solutions.
\end{enumeratea}
\soln
\begin{enumeratea}
\item \RED{Since}
\[
\Matrix{3 \\ 1\\ 1}+ \Matrix{-2 \\ 0 \\ 1}=\Matrix{1 \\ 1 \\ 2}
\].
Then by linearity,
\[
\Matrix{1 \\ 1\\ 2}=\Matrix{3 \\ 1\\ 1}+ \Matrix{-2 \\ 0 \\ 1}=A\Matrix{-1 \\ 2\\ 1}+A\Matrix{0 \\ 4 \\ 0}=A\Matrix{-1 \\ 6 \\ 1}.
\]
So $x=\Matrix{-1 \\ 6 \\ 1}$ is a solution.
\end{enumeratea}
\end{solution}
\end{exercise}
\begin{exercise} \label{YZ_3.4.4}
Let $A$ be a $n\times m$ matrix. Suppose there are $n$ vectors $u_1,\ldots,u_n$ such that
\[
Au_1=\Matrixc{ 1 \\ 0 \\ \vdots \\ 0}, Au_2=\Matrixc{ 0 \\ 1 \\ \vdots \\ 0}, \ldots, Au_n=\Matrixc{0\\ 0 \\ \vdots \\ 1} .
\]
Then verify that for any $m\times 1$ vector $b$, the inhomogeneous equation $Ax=b$ always has a solution.
\begin{solution}
\soln
Note that
\[
b = \Matrixc{b_1 \\ b_2 \\ \vdots \\ b_n} =
b_1\Matrixc{1 \\ 0 \\ \vdots \\ 0}+b_2\Matrixc{ 0 \\ 1 \\ \vdots \\ 0}+\RED{\cdots}+b_n\Matrixc{ 0 \\ 0 \\ \vdots \\ 1}.
\]
Therefore
\[
b = \RED{b_1}Au_1 + \RED{b_2}Au_2 + \cdots + \RED{b_n}Au_n=
A( \RED{b_1}u_1 + \RED{b_2}u_2+\cdots + \RED{b_n}u_n).
\]
\end{solution}
\end{exercise}
\begin{exercise} \label{YZ_3.4.5}
Every solution to the homogeneous
Let $A$ be an $n\times n$ matrix with rank $n-1$. Suppose $u$ and $v$ in $\R^n$ are distinct solutions to the inhomogeneous system $Ax = b$. Verify that every \RED{solution} to $Ax = b$ can be written as
$\alpha u+(1-\alpha)v$ for some $\alpha\in \mathbb R$.
(Hint: idea is similar to Exercise $\ref{A.3.4.2}$.)
\begin{solution}
\soln
\RED{Here is another possible solution. I'm not sure that the needed theorems have already been stated. If correct the references to the needed theorems should be given.
Note that $u-v$ is a nonzero solution to the homogeneous system $Ax = 0$. Since $\rank(A) = n-1$ every solution to the homogeneous system has the form $\alpha(u-v)$. Therefore every solution to the inhomogeneous system has the form
\[
\alpha(u-v) + v = \alpha u + (1-\alpha) v
\]
as claimed.}
Since $A$ has rank $n-1$ and the system $Ax=b$ is consistent, the solution has one free variable, namely, the reduced echelon form of $A$ is
\[
\Matrix{1 & 0 & 0 & \cdots &0 & a_1\\ 0 &1 &0 &\cdots &0&a_2\\ 0& 0 &1 &\cdots &0&a_3 \\ & \cdots & & \cdots& &\\ 0& 0 &0 &\cdots &1&a_{n-1}\\ 0& 0 &0 &\cdots &0&0},
\]
where $a_i\in \mathbb R$ is an unknown number for $1\le i\le n-1$, so we can express the solutions of the homogeneous equation $Ax=0$ as
\[
x=\Matrix{x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\x_n}=\Matrix{-a_1x_n \\ -a_2x_n \\ \vdots \\-a_{n-1}x_n\\ x_n}
=x_n\Matrix{-a_1 \\ -a_2 \\ \vdots \\-a_{n-1}\\ 1},
\]
where $x_n$ is a free variable.
On the other hand, by assumption, $u$ and $v$ are distinct solutions to $Ax=b$, so $u-v$ is a nonzero solution of the homogeneous equation $Ax=0$, then it should be a scalar multiple of $\Matrix{-a_1 \\ -a_2 \\ \vdots \\-a_{n-1}\\ 1}$. In other words, one can express any solution to the homogeneous equation $Ax=0$ as $x=\alpha(u-v)$, where $\alpha\in \mathbb R$. Thus any solution to the inhomogenous equation $Ax=b$ can be written as $\alpha(u-v)+v=\alpha u+(1-\alpha)v$.
\end{solution}
\end{exercise}
\begin{exercise} \label{YZ_3.4.6}
Let $L:\mathbb R^3\to \mathbb R^4$ be a mapping such that
\[
Lx=\Matrixc{x_1-x_2 \\ x_1+x_2-x_3\\ -x_1+x_2+4x_3 \\ -3x_1-x_3}
\]
for all $x=\Matrix{x_1 \\ x_2 \\ x_3}.$
\begin{enumeratea}
\item Find matrix representative of $L$.
\item Verify that $x=\Matrix{-1/4\\-5/4\\-3/2}$ is a solution to the equation $Lx=\Matrix{1 \\ 0 \\ -7\\1 }$.
\item Find the full set of solutions of $Lx=\Matrix{1 \\ 0 \\ -7\\1 }$.
\end{enumeratea}
\begin{solution}
\ans
\begin{enumeratea}
\item The matrix representative of $L$ is
\[
A=\Matrix{1 &-1& 0\\ 1&1&-1\\ -1&1&4 \\ -3&0&-1}.
\]
\item Direct verification.
\item $x=\Matrix{-1/4\\-5/4\\-3/2}$ is the only solution.
\end{enumeratea}
\soln \RED{NEED TO SHOW SOLUTIONS TO (a) (b) (c) }
We use the elementary row reduction to find the reduced echelon form of the matrix $A$:
\[
\Matrix{1 &-1& 0 \\ 1&1&-1 \\ -1&1&4 \\ -3&0&-1 } \to \Matrix{1 &-1& 0 \\ 0&2&-1 \\ 0&0&4 \\ 0&-3&-1} \to
\Matrix{ 1 &-1& 0\\ 0&2&-1 \\ 0&-3&-1 \\ 0&0&4 }
\]
\[
\to \Matrix{1 &-1& 0\\ 0&2&-1 \\ 0&0&-2 \\ 0&0&4 } \to \Matrix{1 &0& 0 \\ 0&1&0 \\ 0&0&1 \\ 0&0&0 }.
\]
Therefore, $A$ has rank 3, so $Ax=0$ only have zero solution, so by principle of superposition, $x=\Matrix{-1/4\\-5/4\\-3/2}$ is the unique solution of the inhomogeneous equation $Ax=b$.
\end{solution}
\end{exercise}
\begin{exercise} \label{YZ_3.4.7}
Let $L:\mathbb R^3\to \mathbb R^2$ be a linear mapping such that
\[
\Matrix{1\\-1\\0}=\Matrix{-3\\1},~L\Matrix{0\\1\\1 }=\Matrix{2\\-1},
\]
and
\[
L\Matrix{ 0\\1\\-1}=\Matrix{0\\1}.
\]
\begin{enumeratea}
\item Determine the matrix representation of $L$. Namely, find the matrix $A$ such that $L_A=L$.
\item Verify that $\Matrix{0\\2\\-2}$ is a solution to $Lx=\Matrix{0\\2}$
\item Find the full set of solutions of $Lx=\Matrix{0\\2}$.
\end{enumeratea}
\begin{solution}
\ans
\begin{enumeratea}
\item The matrix representation of $L$ is
\[
\Matrix{ -2&1&1\\1&0&-1}.
\]
\item Direct verification.
\item The general solution of the inhomogeneous equation is
\[
\alpha \Matrix{1\\1\\1}+\Matrix{0\\2\\-2}, \alpha\in \mathbb R
\]
\end{enumeratea}
\soln
\begin{enumeratea}
\item $\Matrix{ 0\\0\\2 }=L\Matrix{ 0\\1\\1}-L\Matrix{0\\1\\-1}=\Matrix{2\\-2 }$, so
\[
L\Matrix{0\\0\\1}=\Matrix{1\\-1}.
\]
Similarly, subtracting it from the second equation, we get
\[
L\Matrix{0\\1\\0}=L\Matrix{ 0\\1\\1}-L\Matrix{0\\0\\1}=\Matrix{2\\-1}-\Matrix{1\\-1}=\Matrix{1\\0 }.
\]
Finally, adding it to the first equation, we have
\[
L\Matrix{1\\0\\0}=L\Matrix{1\\-1\\0}+L\Matrix{0\\1\\0}=\Matrix{ -3\\1}+\Matrix{1\\0}=\Matrix{-2\\1}.
\]
Therefore the matrix representation $A$ of $L$ is
\[
\Matrix{ -2&1&1\\1&0&-1}.
\]
\item \RED{Verify that
\[
\Matrix{ -2&1&1\\1&0&-1} \Matrix{0\\2\\-2} =\Matrix{0\\2}.
\]
}
\item From the elementary row reduction of $A$, one can find the solution to $Ax=0$ is
\[
\Matrix{1\\1\\1}.
\]
Therefore, the general solution of the inhomogeneous equation is
\[
\alpha \Matrix{1\\1\\1}+\Matrix{0\\2\\-2}, \alpha\in \mathbb R
\]
\end{enumeratea}
\end{solution}
\end{exercise}
\end{document}