
DefiDollar

Details
Issues Summary
Executive summary

Documentation
Meetings

Scope
Issues

[YVaultPeak] - Augment get_virtual_price with price feed data from Chainlink
[IController] - defined as a Contract rather than Interface
[Controller] - Emit event when adding a peak / vault
[Controller] - Should check if peak is already added before enabling it
[Controller, YVaultZap] - Use approve instead of safeApprove
[Core] - Optimize mint gas usage
[Core] - Apply "Check-Effects-Interactions" at all times
[Core] - Remove unused events

Artifacts
UML Diagram

License

Table of Contents

Client Yield Studio Pte. Ltd.
Date December 2020
Lead reviewer Daniel Luca (@cleanunicorn)
Reviewers Daniel Luca (@cleanunicorn), Andrei Simion (@andreiashu)
Repository: DefiDollar
Commit hash 8c693e4c9fc0303a1a9dced77412bfa93913c523
Technologies

Solidity
Node.JS

Details

http://localhost:8642/git@github.com:defidollar/defidollar-core.git

SEVERITY OPEN CLOSED

Major 0 0

Medium 0 1

Minor 0 7

Issues Summary

This report represents the results of the engagement with Yield Studio Pte. Ltd. to review DefiDollar.

The review was conducted over the course of ~2 weeks from November 24 to December 2, 2020. A total of 7 person-days were
spent reviewing the code.

We received the following document which was updated during the review with more information and notes.

Review notes from client

The following meetings were recorded and reviewed later by the audit team.

Sync #1 recording
Sync #2 recording

Passcode: +DCQ*S0%

Executive summary

Documentation

Meetings

https://docs.google.com/document/d/1ulpClyJ1Fy1-OdgQF1Mkn-BGpAqy0v1Dxp6TkrMC6fY/edit
http://localhost:8642/recordings/
https://us02web.zoom.us/rec/share/vZFZf2OXllFNR917xhnWW-3SLgPh-f78kUCoTodbH6RoxyHEKXpGbFLmAf7IIBn8.aADQcPoLq-6wnlcm

The initial review focused on the DefiDollar identified by the commit hash 8c693e4c9fc0303a1a9dced77412bfa93913c523 .

We were asked to exclude the following folders and contracts:

contracts/peaks/curve
contracts/stream/mocks
contracts/stream/Oracle.sol
contracts/valley

We focused on manually reviewing the codebase, searching for security issues such as, but not limited to re-entrancy problems,
transaction ordering, block timestamp dependency, exception handling, call stack depth limitation, integer overflow/underflow, self-
destructible contracts, unsecured balance, use of origin, gas costly patterns, architectural problems, code readability.

Closer look at

Core.sol - has some variables that are redundant now but were a part of the system and can't be deleted without changing the
storage layout - so just need to verify that the redundant variables which refer to the contract in the above directories do not
have a side affects/exploit scenarios.
Upgradable Proxy pattern
Side-effects of deprecated parts for e.g. peaksAddresses[0] has now been marked extinct and peaksAddresses[1] is the
currently used yVaultPeak

Scope

http://localhost:8642/git@github.com:defidollar/defidollar-core.git

Status Acknowledged Severity Medium

Description

 yCrvToUsd function uses Curve's get_virtual_price to determine the price of the yCrv token in USD.

code/contracts/peaks/yearn/YVaultPeak.sol#L104-L106

 function yCrvToUsd() public view returns (uint) {
 return ySwap.get_virtual_price();
 }

This, in turn, is used in most of the user-facing functionality of the YVaultPeak. Therefore any malicious manipulation of price can
have wide-reaching consequences in the system.

code/contracts/peaks/yearn/YVaultPeak.sol#L86

 _yCrv = dusdAmount.mul(1e18).div(yCrvToUsd()).mul(redeemMultiplier).div(MAX);

code/contracts/peaks/yearn/YVaultPeak.sol#L99

 _yCrv = dusdAmount.mul(1e18).div(yCrvToUsd()).mul(redeemMultiplier).div(MAX);

code/contracts/peaks/yearn/YVaultPeak.sol#L144-L148

 function yUSDToUsd() public view returns (uint) {
 return controller.getPricePerFullShare(address(yCrv)) // # yCrv
 .mul(yCrvToUsd()) // USD price
 .div(1e18);
 }

code/contracts/peaks/yearn/YVaultPeak.sol#L150-L153

 function portfolioValue() external view returns(uint) {
 (,uint total) = yCrvDistribution();
 return total.mul(yCrvToUsd()).div(1e18);
 }

Recently, there has been an attack on Compound platform which made use of the fact that their contracts used only one price
source feed (Coinbase) that quoted the price of DAI 30% higher vs the USD (Compound DAI Liquidation Event Analysis).

We believe this is the reason why very soon after this attack, Curve published a blog post that recommends using Chainlink price
feed data on top of the get_virtual_price call: Chainlink Oracles x Curve Pool Tokens

Excerpt from the article:

Curve pools have so-called virtual price which can be useful for safe pricing of Curve LP tokens. It represents a non-
manipulatable USD value of Curve LP tokens. Unfortunately, it doesn’t correspond to value in any particular stablecoin though

Issues

[YVaultPeak] - Augment get_virtual_price with price feed data from Chainlink

https://www.curve.fi/y
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/ab01bf1c2d481017cae6b025b6c0a11acbc5ce6e/code/contracts/peaks/yearn/YVaultPeak.sol#L104-L106
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/ab01bf1c2d481017cae6b025b6c0a11acbc5ce6e/code/contracts/peaks/yearn/YVaultPeak.sol#L86
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/ab01bf1c2d481017cae6b025b6c0a11acbc5ce6e/code/contracts/peaks/yearn/YVaultPeak.sol#L99
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/ab01bf1c2d481017cae6b025b6c0a11acbc5ce6e/code/contracts/peaks/yearn/YVaultPeak.sol#L144-L148
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/ab01bf1c2d481017cae6b025b6c0a11acbc5ce6e/code/contracts/peaks/yearn/YVaultPeak.sol#L150-L153
https://compound.finance/
https://www.comp.xyz/t/dai-liquidation-event/642
https://news.curve.fi/chainlink-oracles-and-curve-pools/
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/issues/24

which can be a significant limitation when designing protocols.

Recommendation

We believe that an ideal solution for this issue is one that matches DefiDollar as a product and its users. Therefore along with the
proposed solution that Curve outlined in their post we want to add our own thoughts for consideration.

Our suggestion trades the availability of some of the functions of the system for a more secure system.

Rather than looping through multiple Chainlink price feeds and picking the lowest price, Defi Dollar could just compare the price
returned by get_price_virtual with the aggregated price from Chainlink. If this difference exceeds a predetermined, configurable
threshold (say 2%) then the system should throw an error, otherwise, the average of these two price feeds will be used.

In case you want more security, you can also use other oracles and aggregate data from all of them, this will however increase gas
costs, but will also increase security. In case one of the prices is very different from all the others, your aggregated price oracle will
report failure which, in turn, will signal the main system to stop working for a limited time, until the prices fall into place once again.

It depends on how you want to handle this scenario, how much of the cost you want to offset towards the user, if you want to run an
oracle of your own, or if you want to ignore this scenario altogether.

Status Fixed Severity Minor

Description

 IController is defined as a contract.

code/contracts/interfaces/IController.sol#L5

contract IController {

Typically, the ISomething notation describes an interface. In this case it describes a contract. However it looks like an interface, the
functions are not implemented, but merely defined.

code/contracts/interfaces/IController.sol#L6-L9

 function earn(address _token) external;
 function vaultWithdraw(IERC20 token, uint _shares) external;
 function withdraw(IERC20 token, uint amount) external;
 function getPricePerFullShare(address token) external view returns(uint);

Recommendation

Use interface instead of contract when defining IController .

Status Fixed Severity Minor

Description

Adding a peak is a really important action on the platform.

code/contracts/peaks/Controller.sol#L76-L79

[IController] - defined as a Contract rather than Interface

[Controller] - Emit event when adding a peak / vault

https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/99cf5ab45ecc87a1b825fa6adf79cf5e71bb5b94/code/contracts/interfaces/IController.sol#L5
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/99cf5ab45ecc87a1b825fa6adf79cf5e71bb5b94/code/contracts/interfaces/IController.sol#L6-L9
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/40803a17c0f30599363559bf85a95ea171f44661/code/contracts/peaks/Controller.sol#L76-L79
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/issues/21
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/issues/16

 function addPeak(address peak) external onlyOwner {
 require(Address.isContract(peak), "peak is !contract");
 peaks[peak] = true;
 }

Similarly, a vault is also important.

code/contracts/peaks/Controller.sol#L81-L85

 function addVault(address token, address vault) external onlyOwner {
 require(Address.isContract(token), "token is !contract");
 require(Address.isContract(vault), "vault is !contract");
 vaults[token] = IVault(vault);
 }

Recommendation

Consider emitting an event when they are added.

[optional] References

Status Fixed Severity Minor

Description

The method addPeak enables a new peak.

code/contracts/peaks/Controller.sol#L76-L79

 function addPeak(address peak) external onlyOwner {
 require(Address.isContract(peak), "peak is !contract");
 peaks[peak] = true;
 }

The peak is enabled whether the peak was already enabled or not.

Recommendation

Add a require check to make sure the peak is not already enabled.

This can notify the transaction creator before the transaction is executed that it will fail if one peak is already added.

Status Fixed Severity Minor

Description

The approve() method in ERC20's defined tokens suffers from an attack known as a multiple withdrawal attack. The method was
envisioned as a way for token holders to permit other users and dapps to withdraw a capped number of tokens.

When a token holder wants to adjust the amount of approved tokens from N to M (either increase or decrease), a malicious user or
dapp who is approved for N tokens can front-run the adjustment transaction first to withdraw N tokens, then allow the approval to be

[Controller] - Should check if peak is already added before enabling it

[Controller, YVaultZap] - Use approve instead of safeApprove

https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/40803a17c0f30599363559bf85a95ea171f44661/code/contracts/peaks/Controller.sol#L81-L85
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/06cf5fc3db50bb93be045921833794c18f467ac8/code/contracts/peaks/Controller.sol#L76-L79
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/issues/15
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/issues/10

confirmed, and withdraw additional M tokens.

For this security hole to be exploited, the approve and transfer methods need to be executed in separate transactions.

Within DefiDollar contracts, the safeApprove() method from the openzeppelin-contracts/SafeERC20 library has been used for
allowing different subsystems (both internal, DefiDollar contracts (but also external like Curve LP) to transfer tokens between them.

code/contracts/peaks/Controller.sol#L37-L38

 token.safeApprove(address(vault), 0);
 token.safeApprove(address(vault), b);

There are 2 issues with the use of this method within DefiDollar:

1. safeApprove() has been deprecated in the latest version of openzeppelin-contracts since it's not really solving the multiple
withdrawal attack correctly:

contracts/token/ERC20/SafeERC20.sol#L30-L37

 /**
 * @dev Deprecated. This function has issues similar to the ones found in
 * {IERC20-approve}, and its usage is discouraged.
 *
 * Whenever possible, use {safeIncreaseAllowance} and
 * {safeDecreaseAllowance} instead.
 */
 function safeApprove(IERC20 token, address spender, uint256 value) internal {

2. Since all approve and transferFrom operations within DefiDollar happen within the same transaction, the risk of a multiple
withdrawal attack is non-existent.

Recommendations

Use the plain ERC20 approve() method when transferring tokens between contracts within the same transaction.

Status Fixed Severity Minor

Description

The current implementation of mint loads the whole peak structure in memory before accessing a few properties.

code/contracts/base/Core.sol#L93

 Peak memory peak = peaks[msg.sender];

The only properties which are accessed are

 peak.amount

code/contracts/base/Core.sol#L94

 uint tvl = peak.amount.add(dusdAmount);

[Core] - Optimize mint gas usage

https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/06cf5fc3db50bb93be045921833794c18f467ac8/code/contracts/peaks/Controller.sol#L37-L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/90ed1af972299070f51bf4665a85da56ac4d355e/contracts/token/ERC20/SafeERC20.sol#L30-L37
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L93
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L94
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/issues/5

 peak.state

code/contracts/base/Core.sol#L97

 && peak.state == PeakState.Active

 peak.ceiling

code/contracts/base/Core.sol#L98

 && tvl <= peak.ceiling,

However, the whole structure also contains an array, which is not necessary for this method.

code/contracts/base/Core.sol#L37-L42

 struct Peak {
 uint[] systemCoinIds; // system indices of the coins accepted by the peak
 uint amount;
 uint ceiling;
 PeakState state;
 }

Because the structure is loaded into memory (by specifying memory instead of storage), the whole structure is loaded from
storage and saved into memory. In some cases, this isn't the best option because it can load data that isn't needed, wasting gas.

By comparison, the storage keyword will create a reference to the storage data without loading all the data into memory.

The peak amount is also updated in this method.

code/contracts/base/Core.sol#L101

 peaks[msg.sender].amount = tvl;

Recommendation

Because it reduces gas usage and because the structure is also modified, the storage keyword can be specified when loading the
peak.

This can also be applied to redeem .

code/contracts/base/Core.sol#L107-L126

 /**
 * @notice Redeem DUSD
 * @dev Only whitelisted peaks can call this function
 * @param dusdAmount DUSD amount to redeem.
 * @param account Account to burn DUSD from
 */
 function redeem(uint dusdAmount, address account)
 external
 returns(uint usd)
 {
 Peak memory peak = peaks[msg.sender];
 require(
 dusdAmount > 0 && peak.state != PeakState.Extinct,
 "ERR_REDEEM"
);

https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L97
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L98
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L37-L42
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L101
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L107-L126

 peaks[msg.sender].amount = peak.amount.sub(peak.amount.min(dusdAmount));
 dusd.burn(account, dusdAmount);
 emit Redeem(account, dusdAmount);
 return dusdAmount;
 }

Status Fixed Severity Minor

Description

Not all checks are done before applying the changes. Even if in this case is not a problem, applying the pattern is a good rule of
thumb.

code/contracts/base/Core.sol#L67-L77

 require(
 address(_dusd) != address(0),
 "0 address during initialization"
);
 dusd = _dusd;
 stakeLPToken = _stakeLPToken;
 oracle = _oracle;
 require(
 _redeemFactor <= FEE_PRECISION && _colBuffer <= FEE_PRECISION,
 "Incorrect upper bound for fee"
);

Recommendation

Apply Check-Effects-Interactions pattern.

References

Solidity docs

Status Fixed Severity Minor

Description

There are a few events that don't seem to be used anymore.

code/contracts/base/Core.sol#L50

 event FeedUpdated(uint[] feed);

code/contracts/base/Core.sol#L53

 event UpdateDeficitState(bool inDeficit);

Recommendation

[Core] - Apply "Check-Effects-Interactions" at all times

[Core] - Remove unused events

https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L67-L77
https://docs.soliditylang.org/en/v0.5.17/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L50
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L53
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/issues/4
https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/issues/2

Consider removing these events.

References

These events seem to be related to the method whitelistPeak .

code/contracts/base/Core.sol#L210

 bool /* shouldUpdateFeed */

https://github.com/monoceros-alpha/audit-defi-dollar-2020-11/blob/a7e1ea1b0c1da64380a3c8e2e81efe14481c6dc2/code/contracts/base/Core.sol#L210

Migrations

Public:
 owner: address
 last_completed_migration: uint

Public:
 <<modifier>> restricted()
 constructor()
 setCompleted(completed: uint)

Core

Public:
 FEE_PRECISION: uint
 dusd: IDUSD
 stakeLPToken: IStakeLPToken
 oracle: IOracle
 systemCoins: address[]
 feed: uint[]
 totalAssets: uint
 unclaimedRewards: uint
 inDeficit: bool
 redeemFactor: uint
 colBuffer: uint
 peaks: mapping(address=>Peak)
 peaksAddresses: address[]

Internal:
 _whitelistToken(token: address)
External:
 mint(dusdAmount: uint, account: address): uint
 redeem(dusdAmount: uint, account: address): (usd: uint)
 harvest()
 authorizeController(_controller: address)
 whitelistTokens(tokens: address[])
 whitelistPeak(peak: address, _systemCoins: uint[], ceiling: uint, bool)
 setPeakStatus(peak: address, ceiling: uint, state: PeakState)
 setFee(_redeemFactor: uint, _colBuffer: uint)
Public:
 <<event>> Mint(account: address, amount: uint)
 <<event>> Redeem(account: address, amount: uint)
 <<event>> FeedUpdated(feed: uint[])
 <<event>> TokenWhiteListed(token: address)
 <<event>> PeakWhitelisted(peak: address)
 <<event>> UpdateDeficitState(inDeficit: bool)
 initialize(_dusd: IDUSD, _stakeLPToken: IStakeLPToken, _oracle: IOracle, _redeemFactor: uint, _colBuffer: uint)
 authorizedController(): address
 earned(): uint
 totalSystemAssets(): (_totalAssets: uint)
 dusdToUsd(_dusd: uint, fee: bool): (usd: uint)

Initializable

Private:
 _gap: uint256[]
Public:
 initialized: bool

Internal:
 getStore(a: uint): uint
 setStore(a: uint, val: uint)
Public:
 <<modifier>> notInitialized()

OwnableProxy

Public:
 OWNER_SLOT: bytes32

Internal:
 _transferOwnership(newOwner: address)
Public:
 <<event>> OwnershipTransferred(previousOwner: address, newOwner: address)
 <<modifier>> onlyOwner()
 constructor()
 owner(): (_owner: address)
 isOwner(): bool
 transferOwnership(newOwner: address)

<<Interface>>
ICore

External:
 mint(dusdAmount: uint, account: address): (usd: uint)
 redeem(dusdAmount: uint, account: address): (usd: uint)
 dusdToUsd(_dusd: uint, fee: bool): (usd: uint)
 peaks(peak: address): (uint, uint, uint8)

<<Interface>>
IDUSD

External:
 mint(account: address, amount: uint)
 burn(account: address, amount: uint)
 totalSupply(): uint
 burnForSelf(amount: uint)

<<Interface>>
IOracle

External:
 getPriceFeed(): uint[]

<<Interface>>
IPeak

External:
 portfolioValue(): uint

<<Interface>>
IStakeLPToken

External:
 notify(_deficit: uint)
 totalSupply(): uint

<<struct>>
Peak

systemCoinIds: uint[]
amount: uint
ceiling: uint
state: PeakState

<<enum>>
PeakState

Extinct
Active
Dormant

CoreProxy

Public:
 constructor()

UpgradableProxy

Public:
 IMPLEMENTATION_SLOT: bytes32

Private:
 setImplementation(_newProxyTo: address)
Internal:
 isContract(_target: address): bool
Public:
 <<fallback>> ()
 <<event>> ProxyUpdated(previousImpl: address, newImpl: address)
 implementation(): (_impl: address)
 updateAndCall(_newProxyTo: address, data: bytes)
 updateImplementation(_newProxyTo: address)

DUSD

Public:
 core: address

External:
 burnForSelf(amount: uint)
Public:
 <<modifier>> onlyCore()
 constructor(_core: address, _name: string, _symbol: string, _decimals: uint8)
 mint(account: address, amount: uint)
 burn(account: address, amount: uint)

<<Interface>>
VaultController

External:
 withdraw(address, uint)
 balanceOf(address): uint
 earn(address, uint)

MockYvault

Public:
 token: IERC20
 min: uint
 max: uint
 governance: address
 controller: address

External:
 setMin(_min: uint)
 deposit(_amount: uint)
 withdraw(_shares: uint)
Public:
 constructor(_token: address, _controller: address)
 balance(): uint
 setGovernance(_governance: address)
 setVaultController(_controller: address)
 available(): uint
 earn()
 getPricePerFullShare(): uint

Reserve

External:
 getPricePerFullShare(): uint
Public:
 constructor(_name: string, _symbol: string, _decimals: uint8)
 mint(account: address, amount: uint): bool
 burn(account: address, amount: uint): bool

<<Interface>>
IERCProxy

External:
 proxyType(): (proxyTypeId: uint)
 implementation(): (codeAddr: address)

<<Abstract>>
Proxy

Internal:
 delegatedFwd(_dst: address, _calldata: bytes)
External:
 proxyType(): (proxyTypeId: uint)
Public:
 <<abstract>> implementation(): address

<<Abstract>>
IController

External:
 <<abstract>> earn(_token: address)
 <<abstract>> vaultWithdraw(token: IERC20, _shares: uint)
 <<abstract>> withdraw(token: IERC20, amount: uint)
 <<abstract>> getPricePerFullShare(token: address): uint

<<Interface>>
ICurveDeposit

External:
 add_liquidity(uamounts: uint[], min_mint_amount: uint)
 remove_liquidity(amount: uint, min_uamounts: uint[])
 remove_liquidity_imbalance(uamounts: uint[], max_burn_amount: uint)
 remove_liquidity_one_coin(_token_amount: uint, i: int128, min_uamount: uint)
 calc_withdraw_one_coin(_token_amount: uint, i: int128): uint

<<Interface>>
ICurve

External:
 add_liquidity(uamounts: uint[], min_mint_amount: uint)
 remove_liquidity_imbalance(uamounts: uint[], max_burn_amount: uint)
 remove_liquidity(amount: uint, min_amounts: uint[])
 calc_token_amount(inAmounts: uint[], deposit: bool): uint
 balances(i: int128): uint
 get_virtual_price(): uint
 exchange(i: int128, j: int128, dx: uint256, min_dy: uint256)
 mock_add_to_balance(amounts: uint[])

<<Interface>>
IUtil

External:
 get_D(uamounts: uint[]): uint

<<Interface>>
IVault

External:
 deposit(uint)
 withdraw(_shares: uint)
 getPricePerFullShare(): uint
 totalSupply(): uint
 balanceOf(account: address): uint

Controller

Private:
 _gap: uint256[]
Public:
 peaks: mapping(address=>bool)
 vaults: mapping(address=>IVault)

External:
 addPeak(peak: address)
 addVault(token: address, vault: address)
Public:
 <<modifier>> onlyPeak()
 earn(token: IERC20)
 vaultWithdraw(token: IERC20, _shares: uint)
 withdraw(token: IERC20, amount: uint)
 getPricePerFullShare(token: address): uint

ControllerProxy

Public:
 constructor()

CurveSusdPeak

Public:
 MAX: uint
 N_COINS: uint
 ERR_SLIPPAGE: string
 ZEROES: uint[]
 underlyingCoins: address[]
 feed: uint[]
 curveDeposit: ICurveDeposit
 curve: ICurve
 curveToken: IERC20
 util: IUtil
 gauge: IGauge
 mintr: IMintr
 core: ICore

Internal:
 _mint(inAmounts: uint[], minDusdAmount: uint): (dusdAmount: uint)
 _sCrvToUsd(sCrvBal: uint, uint[]): uint
 _secureFunding(usd: uint): (sCrv: uint)
 _stake(amount: uint)
External:
 mint(inAmounts: uint[], minDusdAmount: uint): (dusdAmount: uint)
 mintWithScrv(inAmount: uint, minDusdAmount: uint): (dusdAmount: uint)
 redeem(dusdAmount: uint, minAmounts: uint[])
 redeemInSingleCoin(dusdAmount: uint, i: uint, minOut: uint)
 redeemInScrv(dusdAmount: uint, minOut: uint)
 harvest(shouldClaim: bool, minDusdAmount: uint): uint
 getRewards(tokens: address[], destination: address)
Public:
 migrate(destinationPeak: address, sCrv: uint)
 initialize(_curveDeposit: ICurveDeposit, _curve: ICurve, _curveToken: IERC20, _core: ICore, _util: IUtil, _gauge: IGauge, _mintr: IMintr, _underlyingCoins: address[])
 stake()
 claimRewards()
 replenishApprovals(value: uint)
 calcMint(inAmounts: uint[]): (dusdAmount: uint)
 calcMintWithScrv(inAmount: uint): (dusdAmount: uint)
 calcRedeem(dusdAmount: uint): (amounts: uint[])
 calcRedeemWithScrv(dusdAmount: uint): (amount: uint)
 calcRedeemInSingleCoin(dusdAmount: uint, i: uint): (amount: uint)
 usdToScrv(usd: uint): (sCrv: uint)
 portfolioValue(): uint
 sCrvToUsd(sCrvBal: uint): uint
 sCrvBalance(): uint
 vars(): (_curveDeposit: address, _curve: address, _curveToken: address, _util: address, _gauge: address, _mintr: address, _core: address, _underlyingCoins: address[], _feed: uint[])

<<Interface>>
Uni

External:
 swapExactTokensForTokens(uint, uint, address[], address, uint)

<<Interface>>
IGauge

External:
 deposit(uint)
 balanceOf(address): uint
 claimable_tokens(address): uint
 claimable_reward(address): uint
 withdraw(uint, bool)
 claim_rewards()

<<Interface>>
IMintr

External:
 mint(address)

CurveSusdPeakProxy

Public:
 constructor()

Gauge

Public:
 scrv: IERC20
 balances: mapping(address=>uint)

External:
 deposit(amount: uint)
 balanceOf(address): uint
 withdraw(amount: uint, bool)
 claimable_tokens(address): uint
 claimable_reward(address): uint
 claim_rewards()
Public:
 constructor(_scrv: IERC20)

Mintr

External:
 mint(address)

MockSusdToken

Public:
 constructor()
 burnFrom(account: address, amount: uint)

YVaultPeak

Public:
 ERR_INSUFFICIENT_FUNDS: string
 MAX: uint
 min: uint
 redeemMultiplier: uint
 feed: uint[]
 core: ICore
 ySwap: ICurve
 yCrv: IERC20
 yUSD: IERC20
 controller: IController

Internal:
 toFarm(): uint
 _setParams(_min: uint, _redeemMultiplier: uint)
External:
 mintWithYcrv(inAmount: uint): (dusdAmount: uint)
 redeemInYcrv(dusdAmount: uint, minOut: uint): (_yCrv: uint)
 mintWithYusd(inAmount: uint)
 redeemInYusd(dusdAmount: uint, minOut: uint)
 portfolioValue(): uint
 vars(): (_core: address, _ySwap: address, _yCrv: address, _yUSD: address, _controller: address, _redeemMultiplier: uint, _min: uint)
 setParams(_min: uint, _redeemMultiplier: uint)
Public:
 initialize(_controller: IController)
 yCrvDistribution(): (here: uint, total: uint)
 calcMintWithYcrv(inAmount: uint): (dusdAmount: uint)
 calcRedeemInYcrv(dusdAmount: uint): (_yCrv: uint)
 yCrvToUsd(): uint
 calcMintWithYusd(inAmount: uint): (dusdAmount: uint)
 calcRedeemInYusd(dusdAmount: uint): uint
 yUSDToUsd(): uint

YVaultPeakProxy

Public:
 constructor()

YVaultPeakTest

Public:
 yCrvToUsd(): uint
 setDeps(_core: ICore, _ySwap: ICurve, _yCrv: IERC20, _yUSD: IERC20)

YVaultPeakTest2

Public:
 yCrvToUsd(): uint
 dummyIncrementVirtualPrice()

YVaultZap

Public:
 N_COINS: uint
 ERR_SLIPPAGE: string
 ZEROES: uint[]
 coins: address[]
 underlyingCoins: address[]
 yDeposit: ICurveDeposit
 ySwap: ICurve
 yCrv: IERC20
 dusd: IERC20
 yVaultPeak: YVaultPeak

External:
 mint(inAmounts: uint[], minDusdAmount: uint): (dusdAmount: uint)
 redeem(dusdAmount: uint, minAmounts: uint[])
 redeemInSingleCoin(dusdAmount: uint, i: uint, minOut: uint)
Public:
 constructor(_yVaultPeak: YVaultPeak)
 calcMint(inAmounts: uint[]): (dusdAmount: uint)
 calcRedeem(dusdAmount: uint): (amounts: uint[])
 calcRedeemInSingleCoin(dusdAmount: uint, i: uint): uint

<<Interface>>
yERC20

External:
 getPricePerFullShare(): uint

YVaultZapTest

Public:
 constructor(_yVaultPeak: YVaultPeak)
 setDeps(_yDeposit: ICurveDeposit, _ySwap: ICurve, _yCrv: IERC20, _dusd: IERC20, _underlyingCoins: address[], _coins: address[])

Oracle

Public:
 refs: AggregatorInterface[]
 ethUsdAggregator: AggregatorInterface

External:
 addAggregator(_aggregator: AggregatorInterface)
Public:
 constructor(_aggregators: AggregatorInterface[], _ethUsdAggregator: AggregatorInterface)
 getPriceFeed(): (feed: uint[])

ibDUSD

Public:
 FEE_PRECISION: uint
 dusd: IERC20
 controller: ibController
 redeemFactor: uint

External:
 deposit(_amount: uint)
 withdraw(_shares: uint)
 setParams(_dusd: IERC20, _controller: ibController, _redeemFactor: uint)
Public:
 <<modifier>> harvest()
 constructor()
 balance(): uint
 getPricePerFullShare(): uint

<<Interface>>
ibController

External:
 harvest()
 earned(): uint

ibDUSDProxy

Public:
 name(): string
 symbol(): string
 decimals(): uint8

MockAggregator

Public:
 _latestAnswer: int256

External:
 latestAnswer(): int256
Public:
 setLatestAnswer(la: int256)

LPTokenWrapper

Private:
 _balances: mapping(address=>uint)
Public:
 dusd: IERC20
 totalSupply: uint

Public:
 balanceOf(account: address): uint
 stake(amount: uint)
 withdraw(amount: uint)

StakeLPToken

Public:
 core: ICore
 rewardPerTokenStored: uint
 deficit: uint
 isPaused: bool
 userRewardPerTokenPaid: mapping(address=>uint)
 rewards: mapping(address=>uint)

Internal:
 _earned(_rewardPerTokenStored: uint, account: address): uint
 _withdraw(amount: uint)
External:
 exit()
 toggleIsPaused(_isPaused: bool)
Public:
 <<event>> Staked(user: address, amount: uint)
 <<event>> Withdrawn(user: address, amount: uint)
 <<event>> RewardPaid(user: address, reward: uint)
 <<event>> RewardPerTokenUpdated(rewardPerToken: uint, when: uint)
 <<event>> DeficitUpdated(deficit: uint)
 <<modifier>> onlyCore()
 <<modifier>> updateReward(account: address)
 initialize(_core: ICore, _dusd: IERC20)
 stake(amount: uint)
 withdraw(amount: uint)
 getReward()
 earned(account: address): uint
 withdrawAble(account: address): uint

StakeLPTokenProxy

Public:
 constructor()

Artifacts

UML Diagram

This report falls under the terms described in the included LICENSE.

License

https://www.apache.org/licenses/LICENSE-2.0.txt

