forked from schrodinger/coordgenlibs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sketcherMinimizerMaths.h
726 lines (627 loc) · 23.5 KB
/
sketcherMinimizerMaths.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
/*
* sketcherMinimizerMaths.h
*
*
* Created by Nicola Zonta on 15/3/2011.
* Copyright Schrodinger, LLC. All rights reserved
*
*/
#ifndef sketcherMINIMIZERMATHS_H
#define sketcherMINIMIZERMATHS_H
#include <cassert>
#include <cmath>
#include <iostream>
#include <cmath>
#include <vector>
#define MACROCYCLE 9 // smallest MACROCYCLE
#define BONDLENGTH 50
#define FRACTION_OF_BONDLENGTH_FOR_CLASH 0.25
#define SKETCHER_EPSILON 0.0001f
#ifndef M_PI
#define M_PI 3.1415926535897931
#endif
inline float roundToTwoDecimalDigits(float f)
{
return static_cast<float>(floor(f * 100 + 0.5) * 0.01);
}
inline float roundToPrecision(float f, int precision)
{
return static_cast<float>(floor(f * pow(10.f, precision) + 0.5) *
pow(0.1, precision));
}
/* class to represent a point or vector in 2d */
class sketcherMinimizerPointF
{
public:
sketcherMinimizerPointF() = default;
sketcherMinimizerPointF(const sketcherMinimizerPointF& p)
: xp(p.x()), yp(p.y())
{
}
sketcherMinimizerPointF(float xpos, float ypos) : xp(xpos), yp(ypos) {}
sketcherMinimizerPointF& operator=(const sketcherMinimizerPointF& p)
{
if (this != &p) {
xp = p.x();
yp = p.y();
}
return *this;
}
inline float x() const { return xp; }
inline float y() const { return yp; }
inline float& rx() { return xp; }
inline float& ry() { return yp; }
void setX(float x) { xp = x; }
void setY(float y) { yp = y; }
float squareLength() const
{
float dd = x() * x() + y() * y();
return dd;
}
/* return the length of the vector */
float length() const
{
float dd = squareLength();
if (dd > SKETCHER_EPSILON) {
return sqrt(dd);
} else {
return 0;
}
}
/* normalize the vector */
void normalize()
{
float q = length();
if (q > SKETCHER_EPSILON) {
xp /= q;
yp /= q;
}
}
/* rotate the vector by the angle with given sine and cosine */
void rotate(float s, float c)
{
float x = xp;
float y = yp;
xp = x * c + y * s;
yp = -x * s + y * c;
}
/* parallel component of this along the give axis */
sketcherMinimizerPointF
parallelComponent(const sketcherMinimizerPointF& axis)
{
float dotProduct = x() * axis.x() + y() * axis.y();
return axis * dotProduct / axis.squareLength();
}
/* round the coordinates to the given number of decimal figures */
void round(int precision = 2)
{
if (precision == 2) {
xp = roundToTwoDecimalDigits(xp);
yp = roundToTwoDecimalDigits(yp);
} else {
xp = roundToPrecision(xp, precision);
yp = roundToPrecision(yp, precision);
}
}
sketcherMinimizerPointF& operator+=(const sketcherMinimizerPointF& p)
{
xp += p.xp;
yp += p.yp;
return *this;
}
sketcherMinimizerPointF& operator-=(const sketcherMinimizerPointF& p)
{
xp -= p.xp;
yp -= p.yp;
return *this;
}
template <typename T> sketcherMinimizerPointF& operator*=(T c)
{
xp *= static_cast<float>(c);
yp *= static_cast<float>(c);
return *this;
}
template <typename T> sketcherMinimizerPointF& operator/=(T c)
{
xp /= static_cast<float>(c);
yp /= static_cast<float>(c);
return *this;
}
// friend inline bool operator==(const sketcherMinimizerPointF &p1, const
// sketcherMinimizerPointF &p2) ;
// friend inline bool operator!=(const sketcherMinimizerPointF &, const
// sketcherMinimizerPointF &);
inline friend std::ostream& operator<<(std::ostream& out,
sketcherMinimizerPointF& point)
{
out << "(" << point.xp << ", " << point.yp << ")";
return out;
}
friend inline const sketcherMinimizerPointF
operator+(const sketcherMinimizerPointF& p1,
const sketcherMinimizerPointF& p2)
{
return sketcherMinimizerPointF(p1.xp + p2.xp, p1.yp + p2.yp);
}
friend inline const sketcherMinimizerPointF
operator-(const sketcherMinimizerPointF& p1,
const sketcherMinimizerPointF& p2)
{
return sketcherMinimizerPointF(p1.xp - p2.xp, p1.yp - p2.yp);
}
friend inline const sketcherMinimizerPointF
operator*(float c, const sketcherMinimizerPointF& p1)
{
return sketcherMinimizerPointF(p1.xp * c, p1.yp * c);
}
template <typename T>
friend inline const sketcherMinimizerPointF
operator*(const sketcherMinimizerPointF& p1, T c)
{
auto cf = static_cast<float>(c);
return sketcherMinimizerPointF(p1.xp * cf, p1.yp * cf);
}
template <typename T>
friend inline const sketcherMinimizerPointF
operator/(const sketcherMinimizerPointF& p1, T c)
{
auto cf = static_cast<float>(c);
return sketcherMinimizerPointF(p1.xp / cf, p1.yp / cf);
}
friend inline const sketcherMinimizerPointF
operator-(const sketcherMinimizerPointF& p1)
{
return sketcherMinimizerPointF(-p1.xp, -p1.yp);
}
// friend inline const sketcherMinimizerPointF operator/(const
// sketcherMinimizerPointF &, float);
private:
float xp{0.f};
float yp{0.f};
};
/* return true if the two segments intersect and if a result pointer was given,
* set it to the intersection point */
struct sketcherMinimizerMaths {
static bool
intersectionOfSegments(const sketcherMinimizerPointF& s1p1,
const sketcherMinimizerPointF& s1p2,
const sketcherMinimizerPointF& s2p1,
const sketcherMinimizerPointF& s2p2,
sketcherMinimizerPointF* result = nullptr)
{
/*
Suppose the two line segments run from p to p + r and from q to
q + s. Then any point on the first line is representable as p + t r
(for a scalar parameter t) and any point on the second line as q + u
s (for a scalar parameter u).
The two lines intersect if we can find t and u such that:
p + t r = q + u s
Cross both sides with s, getting
(p + t r) × s = (q + u s) × s
And since s × s = 0, this means
t (r × s) = (q − p) × s
And therefore, solving for t:
t = (q − p) × s / (r × s)
In the same way, we can solve for u:
(p + t r) × r = (q + u s) × r
u (s × r) = (p − q) × r
u = (p − q) × r / (s × r)
To reduce the number of computation steps, it's
convenient to rewrite this as follows (remembering that s × r = − r ×
s):
u = (q − p) × r / (r × s)
Now there are five cases:
If r × s = 0 and (q − p) × r = 0, then the two
lines are collinear. If in addition, either 0 ≤ (q − p) · r ≤ r · r
or 0 ≤ (p − q) · s ≤ s · s, then the two lines are overlapping.
If r × s = 0 and (q − p) × r = 0, but neither 0
≤ (q − p) · r ≤ r · r nor 0 ≤ (p − q) · s ≤ s · s, then the two lines
are collinear but disjoint.
If r × s = 0 and (q − p) × r ≠ 0, then the two
lines are parallel and non-intersecting.
If r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, the
two line segments meet at the point p + t r = q + u s.
Otherwise, the two line segments are not
parallel but do not intersect.
*/
const sketcherMinimizerPointF& p = s1p1;
sketcherMinimizerPointF r = s1p2 - s1p1;
const sketcherMinimizerPointF& q = s2p1;
sketcherMinimizerPointF s = s2p2 - s2p1;
float rxs = crossProduct(r, s);
if (rxs > -SKETCHER_EPSILON &&
rxs < SKETCHER_EPSILON) { // parallel lines
return false;
}
sketcherMinimizerPointF qminusp = q - p;
float t = crossProduct(qminusp, s) / rxs;
if (t < 0 || t > 1) {
return false;
}
float u = crossProduct(qminusp, r) / rxs;
if (u < 0 || u > 1) {
return false;
}
if (result) {
*result = p + t * r;
}
return true;
}
/* signed angle between p1p2 and p2p3 */
static float signedAngle(const sketcherMinimizerPointF& p1,
const sketcherMinimizerPointF& p2,
const sketcherMinimizerPointF& p3)
{
sketcherMinimizerPointF v1 = p1 - p2;
sketcherMinimizerPointF v2 = p3 - p2;
return float(atan2(v1.x() * v2.y() - v1.y() * v2.x(),
v1.x() * v2.x() + v1.y() * v2.y()) *
180 / M_PI);
}
/* unsigned angle between p1p2 and p2p3 */
static float unsignedAngle(const sketcherMinimizerPointF& p1,
const sketcherMinimizerPointF& p2,
const sketcherMinimizerPointF& p3)
{
float x1 = p1.x();
float y1 = p1.y();
float x2 = p2.x();
float y2 = p2.y();
float x3 = p3.x();
float y3 = p3.y();
float v1x = x1 - x2;
float v1y = y1 - y2;
float v2x = x3 - x2;
float v2y = y3 - y2;
float d = sqrt(v1x * v1x + v1y * v1y) * sqrt(v2x * v2x + v2y * v2y);
if (d < SKETCHER_EPSILON) {
d = SKETCHER_EPSILON;
}
float cosine = (v1x * v2x + v1y * v2y) / d;
if (cosine < -1) {
cosine = -1;
} else if (cosine > 1) {
cosine = 1;
}
return float((acos(cosine)) * 180 / M_PI);
}
/* return true if the two points are very close in space */
static bool pointsCoincide(const sketcherMinimizerPointF& p1,
const sketcherMinimizerPointF& p2)
{
return ((p1 - p2).squareLength() < SKETCHER_EPSILON * SKETCHER_EPSILON);
}
/* return true if p1 and p2 are in the same semiplane defined by the given
* segment */
static bool sameSide(const sketcherMinimizerPointF& p1,
const sketcherMinimizerPointF& p2,
const sketcherMinimizerPointF& lineP1,
const sketcherMinimizerPointF& lineP2)
{
float x = lineP2.x() - lineP1.x();
float y = lineP2.y() - lineP1.y();
// ///cerr << "("<<p1.x()<<","<<p1.y()<<") ("<<p2.x
// ()<<","<<p2.y()<<") ("<<lineP1.x()<<","<<lineP1.y()<<")
// ("<<lineP2.x ()<<","<<lineP2.y()<<")"<<endl;
if (fabs(float(x)) > fabs((y))) { // what about q?
float m = y / x;
float d1 = p1.y() - lineP1.y() - m * (p1.x() - lineP1.x());
float d2 = p2.y() - lineP1.y() - m * (p2.x() - lineP1.x());
return (d2 * d1 > 0);
} else {
float m = x / y;
float d1 = p1.x() - lineP1.x() - m * (p1.y() - lineP1.y());
float d2 = p2.x() - lineP1.x() - m * (p2.y() - lineP1.y());
return (d2 * d1 > 0);
}
}
/* return the projection of p on the line defined by the given segment */
static sketcherMinimizerPointF
projectPointOnLine(const sketcherMinimizerPointF& p,
const sketcherMinimizerPointF& sp1,
const sketcherMinimizerPointF& sp2)
{
sketcherMinimizerPointF l1 = p - sp1;
sketcherMinimizerPointF l3 = sp2 - sp1;
float segmentl2 = l3.squareLength();
if (segmentl2 < SKETCHER_EPSILON) {
segmentl2 = SKETCHER_EPSILON;
}
float t = sketcherMinimizerMaths::dotProduct(l1, l3) / segmentl2;
return sp1 + t * l3;
}
/* squared distance of the given point from the given segment */
static float squaredDistancePointSegment(const sketcherMinimizerPointF& p,
const sketcherMinimizerPointF& sp1,
const sketcherMinimizerPointF& sp2,
float* returnT = nullptr)
{
sketcherMinimizerPointF l1 = p - sp1;
sketcherMinimizerPointF l2 = sp2 - p;
sketcherMinimizerPointF l3 = sp2 - sp1;
float segmentl2 = l3.x() * l3.x() + l3.y() * l3.y();
// float l1l = sqrt ( l1.x () * l1.x () + l1.y() * l1.y() );
if (segmentl2 < SKETCHER_EPSILON) {
segmentl2 = SKETCHER_EPSILON;
}
float t = (l1.x() * l3.x() + l1.y() * l3.y()) / segmentl2;
if (returnT != nullptr) {
if (t < 0) {
*returnT = 0;
} else if (t > 1) {
*returnT = 1;
} else {
*returnT = t;
}
}
float squaredistance = 0.f;
if (t < 0.f) {
squaredistance = l1.x() * l1.x() + l1.y() * l1.y();
} else if (t > 1.f) {
squaredistance = l2.x() * l2.x() + l2.y() * l2.y();
} else {
sketcherMinimizerPointF proj = sp1 + t * l3;
sketcherMinimizerPointF l5 = p - proj;
squaredistance = l5.x() * l5.x() + l5.y() * l5.y();
}
if (squaredistance < SKETCHER_EPSILON) {
squaredistance = SKETCHER_EPSILON;
}
return squaredistance;
}
static float squaredDistance(const sketcherMinimizerPointF& p1,
const sketcherMinimizerPointF& p2)
{
return (p1.x() - p2.x()) * (p1.x() - p2.x()) +
(p1.y() - p2.y()) * (p1.y() - p2.y());
}
static std::vector<float> tridiagonalSolve(const std::vector<float>& a,
const std::vector<float>& b,
const std::vector<float>& c,
const std::vector<float>& rhs)
{
assert(a.size() == b.size() && a.size() == c.size() &&
a.size() == rhs.size());
assert(b[0] != 0.f);
auto n = static_cast<unsigned int>(rhs.size());
std::vector<float> u(n);
std::vector<float> gam(n);
float bet = b[0];
u[0] = rhs[0] / bet;
for (unsigned int j = 1; j < n; j++) {
gam[j] = c[j - 1] / bet;
bet = b[j] - a[j] * gam[j];
assert(bet != 0.f);
u[j] = (rhs[j] - a[j] * u[j - 1]) / bet;
}
for (unsigned int j = 1; j < n; j++) {
u[n - j - 1] -= gam[n - j] * u[n - j];
}
return u;
}
/* used by ClosedBezierControlPoints */
static std::vector<float> cyclicSolve(const std::vector<float>& a,
const std::vector<float>& b,
const std::vector<float>& c,
float alpha, float beta,
const std::vector<float>& rhs)
{
assert(a.size() == b.size() && a.size() == c.size());
auto n = static_cast<unsigned int>(b.size());
assert(n > 2);
float gamma = -b[0]; // Avoid subtraction error in forming bb[0].
// Set up the diagonal of the modified tridiagonal system.
std::vector<float> bb(n);
bb[0] = b[0] - gamma;
bb[n - 1] = b[n - 1] - alpha * beta / gamma;
for (unsigned int i = 1; i < n - 1; i++) {
bb[i] = b[i];
}
// Solve A · x = rhs.
std::vector<float> solution = tridiagonalSolve(a, bb, c, rhs);
std::vector<float> x = solution;
// Set up the vector u.
std::vector<float> u(n);
u[0] = gamma;
u[n - 1] = alpha;
for (unsigned int i = 1; i < n - 1; i++) {
u[i] = 0.f;
}
// Solve A · z = u.
solution = tridiagonalSolve(a, bb, c, u);
std::vector<float> z = solution;
// Form v · x/(1 + v · z).
double fact = (x[0] + beta * x[n - 1] / gamma) /
(1.f + z[0] + beta * z[n - 1] / gamma);
// Now get the solution vector x.
for (unsigned int i = 0; i < n; i++) {
x[i] -= float(fact * z[i]);
}
return x;
}
static sketcherMinimizerPointF
pointOnCubicBezier(const sketcherMinimizerPointF& p1,
const sketcherMinimizerPointF& cp1,
const sketcherMinimizerPointF& cp2,
const sketcherMinimizerPointF& p2, float t)
{
// using Casteljiau's algorithm
auto v1 = (1 - t) * p1 + t * cp1;
auto v2 = (1 - t) * cp1 + t * cp2;
auto v3 = (1 - t) * cp2 + t * p2;
auto v4 = (1 - t) * v1 + t * v2;
auto v5 = (1 - t) * v2 + t * v3;
return (1 - t) * v4 + t * v5;
}
/* find control points to a closed Bezier curve that passes through the
* given points */
static void ClosedBezierControlPoints(
const std::vector<sketcherMinimizerPointF>& knots,
std::vector<sketcherMinimizerPointF>& firstControlPoints,
std::vector<sketcherMinimizerPointF>& secondControlPoints)
{
auto n = static_cast<unsigned int>(knots.size());
if (n <= 2) {
return;
}
// Calculate first Bezier control points
std::vector<float> a(n), b(n), c(n);
for (unsigned int i = 0; i < n; i++) {
a[i] = 1;
b[i] = 4;
c[i] = 1;
}
std::vector<float> rhs(n);
for (unsigned int i = 0; i < n; i++) {
int j = i + 1;
if (j > int(n - 1)) {
j = 0;
}
rhs[i] = 4 * knots[i].x() + 2 * knots[j].x();
}
// Solve the system for X.
std::vector<float> x = cyclicSolve(a, b, c, 1, 1, rhs);
for (unsigned int i = 0; i < n; i++) {
int j = i + 1;
if (j > int(n - 1)) {
j = 0;
}
rhs[i] = 4 * knots[i].y() + 2 * knots[j].y();
}
// Solve the system for Y.
std::vector<float> y = cyclicSolve(a, b, c, 1, 1, rhs);
// Fill output arrays.
firstControlPoints.resize(n);
secondControlPoints.resize(n);
for (unsigned int i = 0; i < n; i++) {
firstControlPoints[i] = sketcherMinimizerPointF(x[i], y[i]);
secondControlPoints[i] = sketcherMinimizerPointF(
2 * knots[i].x() - x[i], 2 * knots[i].y() - y[i]);
}
}
/* return the mirror image of the given point wrt the given segment */
static sketcherMinimizerPointF
mirrorPoint(const sketcherMinimizerPointF& point,
const sketcherMinimizerPointF& segmentPoint1,
const sketcherMinimizerPointF& segmentPoint2)
{
sketcherMinimizerPointF segmentV = segmentPoint2 - segmentPoint1;
sketcherMinimizerPointF v2 = point - segmentPoint1;
sketcherMinimizerPointF parallelComponent =
v2.parallelComponent(segmentV);
sketcherMinimizerPointF normalComponent = v2 - parallelComponent;
return segmentPoint1 + parallelComponent - normalComponent;
}
/* dot product of two vectors */
static float dotProduct(const sketcherMinimizerPointF& a,
const sketcherMinimizerPointF& b)
{
return (a.x() * b.x() + a.y() * b.y());
}
/* cross product of two vectors */
static float crossProduct(const sketcherMinimizerPointF& a,
const sketcherMinimizerPointF& b)
{
return (a.x() * b.y() - a.y() * b.x());
}
static float cannonBallDistance(float originX, float originY, float originZ,
float directionX, float directionY,
float directionZ, float targetX,
float targetY, float targetZ, float ballR,
float targetR, float cutOff = 4.f)
// how far can a cannonball of radius ballR shot from origin travel befor
// hitting a target ball of targetR radius
{
// assume that direction is normalized
float targetdX = targetX - originX;
float targetdY = targetY - originY;
float targetdZ = targetZ - originZ;
float rR = ballR + targetR;
float d2 = (targetdX * targetdX) + (targetdY * targetdY) +
(targetdZ * targetdZ);
if (d2 > (cutOff + rR) * (cutOff + rR)) {
return cutOff;
}
if (d2 < rR * rR) {
return 0;
}
float d = sqrt(d2);
if (d > SKETCHER_EPSILON) {
targetdX /= d;
targetdY /= d;
targetdZ /= d;
}
float cos = targetdX * directionX + targetdY * directionY +
targetdZ * directionZ;
if (cos < 0) {
return cutOff;
}
float sin = sqrt(1 - (cos * cos));
float f = d * sin;
if (f > rR) {
return cutOff;
}
float result = sqrt(d2 - (f * f)) - sqrt((rR * rR) - (f * f));
if (result > cutOff) {
return cutOff;
}
return result;
}
/* length of a 3d vector */
static float length3D(float x, float y, float z)
{
float m = x * x + y * y + z * z;
if (m > SKETCHER_EPSILON) {
m = sqrt(m);
}
return m;
}
/* dot product of two 3d vectors */
static float dotProduct3D(float x1, float y1, float z1, float x2, float y2,
float z2)
{
return x1 * x2 + y1 * y2 + z1 * z2;
}
/* cross product of two 3d vectors */
static void crossProduct3D(float x1, float y1, float z1, float x2, float y2,
float z2, float& xr, float& yr, float& zr)
{
xr = y1 * z2 - z1 * y2;
yr = z1 * x2 - x1 * z2;
zr = x1 * y2 - y1 * x2;
}
static float distance3D(float x1, float y1, float z1, float x2, float y2,
float z2)
{
return length3D(x2 - x1, y2 - y1, z2 - z1);
}
/* angle between two 3d vectors */
static float angle3D(float x1, float y1, float z1, float x2, float y2,
float z2, float x3, float y3, float z3)
{
float xa = x1 - x2;
float ya = y1 - y2;
float za = z1 - z2;
float xb = x3 - x2;
float yb = y3 - y2;
float zb = z3 - z2;
float l1 = length3D(xa, ya, za);
float l2 = length3D(xb, yb, zb);
float dp = dotProduct3D(xa, ya, za, xb, yb, zb);
return static_cast<float>(acos(dp / (l1 * l2)) * 180.f / M_PI);
}
/* dihedral angle defined by 4 3d points */
static float dihedral3D(float x1, float y1, float z1, float x2, float y2,
float z2, float x3, float y3, float z3, float x4,
float y4, float z4)
{
float xa, ya, za;
crossProduct3D(x1 - x2, y1 - y2, z1 - z2, x3 - x2, y3 - y2, z3 - z2, xa,
ya, za);
float xb, yb, zb;
crossProduct3D(x2 - x3, y2 - y3, z2 - z3, x4 - x3, y4 - y3, z4 - z3, xb,
yb, zb);
return angle3D(xa, ya, za, 0, 0, 0, xb, yb, zb);
}
}; // struct sketcherMinimizerMaths
#endif // sketcherMINIMIZERMATHS_H