diff --git a/modin/core/storage_formats/base/query_compiler.py b/modin/core/storage_formats/base/query_compiler.py index 965fb98efb3..76d3902a6e3 100644 --- a/modin/core/storage_formats/base/query_compiler.py +++ b/modin/core/storage_formats/base/query_compiler.py @@ -22,7 +22,7 @@ import abc import warnings from functools import cached_property -from typing import TYPE_CHECKING, Hashable, List, Optional +from typing import TYPE_CHECKING, Hashable, List, Literal, Optional import numpy as np import pandas @@ -4270,6 +4270,24 @@ def get_axis(self, axis): """ return self.index if axis == 0 else self.columns + def get_axis_len(self, axis: Literal[0, 1]) -> int: + """ + Return the length of the specified axis. + + A query compiler may choose to override this method if it has a more efficient way + of computing the length of an axis without materializing it. + + Parameters + ---------- + axis : {0, 1} + Axis to return labels on. + + Returns + ------- + int + """ + return len(self.get_axis(axis)) + def take_2d_labels( self, index, diff --git a/modin/core/storage_formats/pandas/query_compiler.py b/modin/core/storage_formats/pandas/query_compiler.py index 655d427de1d..cd0e59ca56f 100644 --- a/modin/core/storage_formats/pandas/query_compiler.py +++ b/modin/core/storage_formats/pandas/query_compiler.py @@ -25,7 +25,7 @@ import re import warnings from collections.abc import Iterable -from typing import TYPE_CHECKING, Hashable, List, Optional +from typing import TYPE_CHECKING, Hashable, List, Literal, Optional import numpy as np import pandas @@ -395,6 +395,24 @@ def from_dataframe(cls, df, data_cls): index: pandas.Index = property(_get_axis(0), _set_axis(0)) columns: pandas.Index = property(_get_axis(1), _set_axis(1)) + def get_axis_len(self, axis: Literal[0, 1]) -> int: + """ + Return the length of the specified axis. + + Parameters + ---------- + axis : {0, 1} + Axis to return labels on. + + Returns + ------- + int + """ + if axis == 0: + return len(self._modin_frame) + else: + return sum(self._modin_frame.column_widths) + @property def dtypes(self) -> pandas.Series: return self._modin_frame.dtypes diff --git a/modin/pandas/base.py b/modin/pandas/base.py index 1b893743282..298a376f972 100644 --- a/modin/pandas/base.py +++ b/modin/pandas/base.py @@ -288,7 +288,9 @@ def _build_repr_df( A pandas dataset with `num_rows` or fewer rows and `num_cols` or fewer columns. """ # Fast track for empty dataframe. - if len(self.index) == 0 or (self._is_dataframe and len(self.columns) == 0): + if len(self) == 0 or ( + self._is_dataframe and self._query_compiler.get_axis_len(1) == 0 + ): return pandas.DataFrame( index=self.index, columns=self.columns if self._is_dataframe else None, @@ -1004,7 +1006,7 @@ def error_raiser(msg, exception): return result._query_compiler return result elif isinstance(func, dict): - if len(self.columns) != len(set(self.columns)): + if self._query_compiler.get_axis_len(1) != len(set(self.columns)): warnings.warn( "duplicate column names not supported with apply().", FutureWarning, @@ -2860,7 +2862,7 @@ def sample( axis_length = len(axis_labels) else: # Getting rows requires indices instead of labels. RangeIndex provides this. - axis_labels = pandas.RangeIndex(len(self.index)) + axis_labels = pandas.RangeIndex(len(self)) axis_length = len(axis_labels) if weights is not None: # Index of the weights Series should correspond to the index of the @@ -3217,7 +3219,7 @@ def tail(self, n=5) -> Self: # noqa: PR01, RT01, D200 """ if n != 0: return self.iloc[-n:] - return self.iloc[len(self.index) :] + return self.iloc[len(self) :] def take(self, indices, axis=0, **kwargs) -> Self: # noqa: PR01, RT01, D200 """ @@ -4149,7 +4151,7 @@ def __len__(self) -> int: ------- int """ - return len(self.index) + return self._query_compiler.get_axis_len(0) @_doc_binary_op( operation="less than comparison", diff --git a/modin/pandas/dataframe.py b/modin/pandas/dataframe.py index 2ce83913ebb..e90837a3b6d 100644 --- a/modin/pandas/dataframe.py +++ b/modin/pandas/dataframe.py @@ -268,13 +268,15 @@ def __repr__(self) -> str: ------- str """ - num_rows = pandas.get_option("display.max_rows") or len(self.index) - num_cols = pandas.get_option("display.max_columns") or len(self.columns) + num_rows = pandas.get_option("display.max_rows") or len(self) + num_cols = pandas.get_option( + "display.max_columns" + ) or self._query_compiler.get_axis_len(1) result = repr(self._build_repr_df(num_rows, num_cols)) - if len(self.index) > num_rows or len(self.columns) > num_cols: + if len(self) > num_rows or self._query_compiler.get_axis_len(1) > num_cols: # The split here is so that we don't repr pandas row lengths. return result.rsplit("\n\n", 1)[0] + "\n\n[{0} rows x {1} columns]".format( - len(self.index), len(self.columns) + *self.shape ) else: return result @@ -293,13 +295,11 @@ def _repr_html_(self) -> str: # pragma: no cover # We use pandas _repr_html_ to get a string of the HTML representation # of the dataframe. result = self._build_repr_df(num_rows, num_cols)._repr_html_() - if len(self.index) > num_rows or len(self.columns) > num_cols: + if len(self) > num_rows or self._query_compiler.get_axis_len(1) > num_cols: # We split so that we insert our correct dataframe dimensions. return result.split("
")[ 0 - ] + "
{0} rows x {1} columns
\n".format( - len(self.index), len(self.columns) - ) + ] + "{0} rows x {1} columns
\n".format(*self.shape) else: return result @@ -365,7 +365,7 @@ def empty(self) -> bool: # noqa: RT01, D200 """ Indicate whether ``DataFrame`` is empty. """ - return len(self.columns) == 0 or len(self.index) == 0 + return self._query_compiler.get_axis_len(1) == 0 or len(self) == 0 @property def axes(self) -> list[pandas.Index]: # noqa: RT01, D200 @@ -379,7 +379,7 @@ def shape(self) -> tuple[int, int]: # noqa: RT01, D200 """ Return a tuple representing the dimensionality of the ``DataFrame``. """ - return len(self.index), len(self.columns) + return len(self), self._query_compiler.get_axis_len(1) def add_prefix(self, prefix, axis=None) -> DataFrame: # noqa: PR01, RT01, D200 """ @@ -781,7 +781,9 @@ def dot(self, other) -> Union[DataFrame, Series]: # noqa: PR01, RT01, D200 """ if isinstance(other, BasePandasDataset): common = self.columns.union(other.index) - if len(common) > len(self.columns) or len(common) > len(other.index): + if len(common) > self._query_compiler.get_axis_len(1) or len(common) > len( + other + ): raise ValueError("Matrices are not aligned") qc = other.reindex(index=common)._query_compiler @@ -1084,7 +1086,7 @@ def insert( + f"{len(value.columns)} columns instead." ) value = value.squeeze(axis=1) - if not self._query_compiler.lazy_row_count and len(self.index) == 0: + if not self._query_compiler.lazy_row_count and len(self) == 0: if not hasattr(value, "index"): try: value = pandas.Series(value) @@ -1099,7 +1101,7 @@ def insert( new_query_compiler = self.__constructor__( value, index=new_index, columns=new_columns )._query_compiler - elif len(self.columns) == 0 and loc == 0: + elif self._query_compiler.get_axis_len(1) == 0 and loc == 0: new_index = self.index new_query_compiler = self.__constructor__( data=value, @@ -1110,18 +1112,19 @@ def insert( if ( is_list_like(value) and not isinstance(value, (pandas.Series, Series)) - and len(value) != len(self.index) + and len(value) != len(self) ): raise ValueError( "Length of values ({}) does not match length of index ({})".format( - len(value), len(self.index) + len(value), len(self) ) ) if allow_duplicates is not True and column in self.columns: raise ValueError(f"cannot insert {column}, already exists") - if not -len(self.columns) <= loc <= len(self.columns): + columns_len = self._query_compiler.get_axis_len(1) + if not -columns_len <= loc <= columns_len: raise IndexError( - f"index {loc} is out of bounds for axis 0 with size {len(self.columns)}" + f"index {loc} is out of bounds for axis 0 with size {columns_len}" ) elif loc < 0: raise ValueError("unbounded slice") @@ -2074,9 +2077,11 @@ def squeeze( Squeeze 1 dimensional axis objects into scalars. """ axis = self._get_axis_number(axis) if axis is not None else None - if axis is None and (len(self.columns) == 1 or len(self) == 1): + if axis is None and ( + self._query_compiler.get_axis_len(1) == 1 or len(self) == 1 + ): return Series(query_compiler=self._query_compiler).squeeze() - if axis == 1 and len(self.columns) == 1: + if axis == 1 and self._query_compiler.get_axis_len(1) == 1: self._query_compiler._shape_hint = "column" return Series(query_compiler=self._query_compiler) if axis == 0 and len(self) == 1: @@ -2671,7 +2676,7 @@ def __setitem__(self, key, value) -> None: return self._setitem_slice(key, value) if hashable(key) and key not in self.columns: - if isinstance(value, Series) and len(self.columns) == 0: + if isinstance(value, Series) and self._query_compiler.get_axis_len(1) == 0: # Note: column information is lost when assigning a query compiler prev_index = self.columns self._query_compiler = value._query_compiler.copy() @@ -2680,7 +2685,9 @@ def __setitem__(self, key, value) -> None: self.columns = prev_index.insert(0, key) return # Do new column assignment after error checks and possible value modifications - self.insert(loc=len(self.columns), column=key, value=value) + self.insert( + loc=self._query_compiler.get_axis_len(1), column=key, value=value + ) return if not hashable(key): @@ -2756,7 +2763,7 @@ def __setitem__(self, key, value) -> None: new_qc = self._query_compiler.insert_item( axis=1, - loc=len(self.columns), + loc=self._query_compiler.get_axis_len(1), value=value._query_compiler, how="left", ) @@ -2783,7 +2790,7 @@ def setitem_unhashable_key(df, value): if not isinstance(value, (Series, Categorical, np.ndarray, list, range)): value = list(value) - if not self._query_compiler.lazy_row_count and len(self.index) == 0: + if not self._query_compiler.lazy_row_count and len(self) == 0: new_self = self.__constructor__({key: value}, columns=self.columns) self._update_inplace(new_self._query_compiler) else: diff --git a/modin/pandas/series.py b/modin/pandas/series.py index 20825343f0d..11188e85879 100644 --- a/modin/pandas/series.py +++ b/modin/pandas/series.py @@ -445,8 +445,8 @@ def __repr__(self) -> str: name_str = "Name: {}, ".format(str(self.name)) else: name_str = "" - if len(self.index) > num_rows: - len_str = "Length: {}, ".format(len(self.index)) + if len(self) > num_rows: + len_str = "Length: {}, ".format(len(self)) else: len_str = "" dtype_str = "dtype: {}".format( @@ -966,7 +966,7 @@ def dot(self, other) -> Union[Series, np.ndarray]: # noqa: PR01, RT01, D200 """ if isinstance(other, BasePandasDataset): common = self.index.union(other.index) - if len(common) > len(self.index) or len(common) > len(other.index): + if len(common) > len(self) or len(common) > len(other): raise ValueError("Matrices are not aligned") qc = other.reindex(index=common)._query_compiler @@ -1761,7 +1761,7 @@ def reset_index( name = 0 if self.name is None else self.name if drop and level is None: - new_idx = pandas.RangeIndex(len(self.index)) + new_idx = pandas.RangeIndex(len(self)) if inplace: self.index = new_idx else: @@ -1989,7 +1989,7 @@ def squeeze(self, axis=None) -> Union[Series, Scalar]: # noqa: PR01, RT01, D200 if axis is not None: # Validate `axis` pandas.Series._get_axis_number(axis) - if len(self.index) == 1: + if len(self) == 1: return self._reduce_dimension(self._query_compiler) else: return self.copy() @@ -2307,7 +2307,7 @@ def empty(self) -> bool: # noqa: RT01, D200 """ Indicate whether Series is empty. """ - return len(self.index) == 0 + return len(self) == 0 @property def hasnans(self) -> bool: # noqa: RT01, D200 @@ -2648,7 +2648,7 @@ def _getitem(self, key) -> Union[Series, Scalar]: if is_bool_indexer(key): return self.__constructor__( query_compiler=self._query_compiler.getitem_row_array( - pandas.RangeIndex(len(self.index))[key] + pandas.RangeIndex(len(self))[key] ) ) # TODO: More efficiently handle `tuple` case for `Series.__getitem__`